Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135340632> ?p ?o ?g. }
- W3135340632 abstract "Domain adaptation (DA) aims at improving the performance of a model on target domains by transferring the knowledge contained in different but related source domains. With recent advances in deep learning models which are extremely data hungry, the interest for visual DA has significantly increased in the last decade and the number of related work in the field exploded. The aim of this paper, therefore, is to give a comprehensive overview of deep domain adaptation methods for computer vision applications. First, we detail and compared different possible ways of exploiting deep architectures for domain adaptation. Then, we propose an overview of recent trends in deep visual DA. Finally, we mention a few improvement strategies, orthogonal to these methods, that can be applied to these models. While we mainly focus on image classification, we give pointers to papers that extend these ideas for other applications such as semantic segmentation, object detection, person re-identifications, and others." @default.
- W3135340632 created "2021-03-15" @default.
- W3135340632 creator A5080963527 @default.
- W3135340632 date "2020-09-01" @default.
- W3135340632 modified "2023-09-25" @default.
- W3135340632 title "Deep Visual Domain Adaptation" @default.
- W3135340632 cites W1573626183 @default.
- W3135340632 cites W1594039573 @default.
- W3135340632 cites W1722318740 @default.
- W3135340632 cites W2025768430 @default.
- W3135340632 cites W2042714649 @default.
- W3135340632 cites W2057266281 @default.
- W3135340632 cites W2097117768 @default.
- W3135340632 cites W2106409489 @default.
- W3135340632 cites W2163922914 @default.
- W3135340632 cites W2164943005 @default.
- W3135340632 cites W2194775991 @default.
- W3135340632 cites W2214409633 @default.
- W3135340632 cites W224346073 @default.
- W3135340632 cites W2293078015 @default.
- W3135340632 cites W2296073425 @default.
- W3135340632 cites W2312004824 @default.
- W3135340632 cites W2557626841 @default.
- W3135340632 cites W2573159777 @default.
- W3135340632 cites W2575615142 @default.
- W3135340632 cites W2584009249 @default.
- W3135340632 cites W2593768305 @default.
- W3135340632 cites W2603777577 @default.
- W3135340632 cites W2618530766 @default.
- W3135340632 cites W2754335125 @default.
- W3135340632 cites W2756073160 @default.
- W3135340632 cites W2757251151 @default.
- W3135340632 cites W2786808285 @default.
- W3135340632 cites W2793888044 @default.
- W3135340632 cites W2795889831 @default.
- W3135340632 cites W2798681837 @default.
- W3135340632 cites W2895281799 @default.
- W3135340632 cites W2904549000 @default.
- W3135340632 cites W2907905507 @default.
- W3135340632 cites W2932414082 @default.
- W3135340632 cites W2939146114 @default.
- W3135340632 cites W2949813473 @default.
- W3135340632 cites W2955889502 @default.
- W3135340632 cites W2962687275 @default.
- W3135340632 cites W2962793481 @default.
- W3135340632 cites W2962971105 @default.
- W3135340632 cites W2963000559 @default.
- W3135340632 cites W2963073217 @default.
- W3135340632 cites W2963107255 @default.
- W3135340632 cites W2963187488 @default.
- W3135340632 cites W2963240485 @default.
- W3135340632 cites W2963403405 @default.
- W3135340632 cites W2963500702 @default.
- W3135340632 cites W2963532621 @default.
- W3135340632 cites W2963683323 @default.
- W3135340632 cites W2963865469 @default.
- W3135340632 cites W2964057616 @default.
- W3135340632 cites W2964288524 @default.
- W3135340632 cites W2965954137 @default.
- W3135340632 cites W2968634921 @default.
- W3135340632 cites W2972285644 @default.
- W3135340632 cites W2976193123 @default.
- W3135340632 cites W2978573218 @default.
- W3135340632 cites W2981392058 @default.
- W3135340632 cites W2982026851 @default.
- W3135340632 cites W2986381065 @default.
- W3135340632 cites W2988852559 @default.
- W3135340632 cites W2990740643 @default.
- W3135340632 cites W2991405316 @default.
- W3135340632 cites W3002879391 @default.
- W3135340632 cites W3009761962 @default.
- W3135340632 cites W3012343004 @default.
- W3135340632 cites W3034562924 @default.
- W3135340632 cites W3034779842 @default.
- W3135340632 cites W3035480894 @default.
- W3135340632 cites W3035576098 @default.
- W3135340632 cites W2769616932 @default.
- W3135340632 doi "https://doi.org/10.1109/synasc51798.2020.00013" @default.
- W3135340632 hasPublicationYear "2020" @default.
- W3135340632 type Work @default.
- W3135340632 sameAs 3135340632 @default.
- W3135340632 citedByCount "3" @default.
- W3135340632 countsByYear W31353406322021 @default.
- W3135340632 countsByYear W31353406322022 @default.
- W3135340632 crossrefType "proceedings-article" @default.
- W3135340632 hasAuthorship W3135340632A5080963527 @default.
- W3135340632 hasBestOaLocation W31353406322 @default.
- W3135340632 hasConcept C134306372 @default.
- W3135340632 hasConcept C139807058 @default.
- W3135340632 hasConcept C154945302 @default.
- W3135340632 hasConcept C15744967 @default.
- W3135340632 hasConcept C169760540 @default.
- W3135340632 hasConcept C2776434776 @default.
- W3135340632 hasConcept C31972630 @default.
- W3135340632 hasConcept C33923547 @default.
- W3135340632 hasConcept C36503486 @default.
- W3135340632 hasConcept C41008148 @default.
- W3135340632 hasConcept C95623464 @default.
- W3135340632 hasConceptScore W3135340632C134306372 @default.
- W3135340632 hasConceptScore W3135340632C139807058 @default.