Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135360879> ?p ?o ?g. }
- W3135360879 endingPage "2876" @default.
- W3135360879 startingPage "2867" @default.
- W3135360879 abstract "Purpose Radiation dose to specific cardiac substructures, such as the atria and ventricles, has been linked to post‐treatment toxicity and has shown to be more predictive of these toxicities than dose to the whole heart. A deep learning‐based algorithm for automatic generation of these contours is proposed to aid in either retrospective or prospective dosimetric studies to better understand the relationship between radiation dose and toxicities. Methods The proposed method uses a mask‐scoring regional convolutional neural network (RCNN) which consists of five major subnetworks: backbone, regional proposal network (RPN), RCNN head, mask head, and mask‐scoring head. Multiscale feature maps are learned from computed tomography (CT) via the backbone network. The RPN utilizes these feature maps to detect the location and region‐of‐interest (ROI) of all substructures, and the final three subnetworks work in series to extract structural information from these ROIs. The network is trained using 55 patient CT datasets, with 22 patients having contrast scans. Threefold cross validation (CV) is used for evaluation on 45 datasets, and a separate cohort of 10 patients are used for holdout evaluation. The proposed method is compared to a 3D UNet. Results The proposed method produces contours that are qualitatively similar to the ground truth contours. Quantitatively, the proposed method achieved average Dice score coefficients (DSCs) for the whole heart, chambers, great vessels, coronary arteries, the valves of the heart of 0.96, 0.94, 0.93, 0.66, and 0.77 respectively, outperforming the 3D UNet, which achieved DSCs of 0.92, 0.87, 0.88, 0.48, and 0.59 for the corresponding substructure groups. Mean surface distances (MSDs) between substructures segmented by the proposed method and the ground truth were <2 mm except for the left anterior descending coronary artery and the mitral and tricuspid valves, and <5 mm for all substructures. When dividing results into noncontrast and contrast datasets, the model performed statistically significantly better in terms of DSC, MSD, centroid mean distance (CMD), and volume difference for the chambers and whole heart with contrast. Notably, the presence of contrast did not statistically significantly affect coronary artery segmentation DSC or MSD. After network training, all substructures and the whole heart can be segmented on new datasets in less than 5 s. Conclusions A deep learning network was trained for automatic delineation of cardiac substructures based on CT alone. The proposed method can be used as a tool to investigate the relationship between cardiac substructure dose and treatment toxicities." @default.
- W3135360879 created "2021-03-15" @default.
- W3135360879 creator A5000658694 @default.
- W3135360879 creator A5009731683 @default.
- W3135360879 creator A5011903902 @default.
- W3135360879 creator A5026088869 @default.
- W3135360879 creator A5030054597 @default.
- W3135360879 creator A5032192226 @default.
- W3135360879 creator A5036226868 @default.
- W3135360879 creator A5048786190 @default.
- W3135360879 creator A5080256711 @default.
- W3135360879 date "2021-04-11" @default.
- W3135360879 modified "2023-10-05" @default.
- W3135360879 title "Automatic delineation of cardiac substructures using a region‐based fully convolutional network" @default.
- W3135360879 cites W1901129140 @default.
- W3135360879 cites W1968899146 @default.
- W3135360879 cites W1987536026 @default.
- W3135360879 cites W2037733019 @default.
- W3135360879 cites W2074292877 @default.
- W3135360879 cites W2093421164 @default.
- W3135360879 cites W2131388913 @default.
- W3135360879 cites W2154375587 @default.
- W3135360879 cites W2194775991 @default.
- W3135360879 cites W2464708700 @default.
- W3135360879 cites W2574924994 @default.
- W3135360879 cites W2581615902 @default.
- W3135360879 cites W2755147576 @default.
- W3135360879 cites W2805381319 @default.
- W3135360879 cites W2806483049 @default.
- W3135360879 cites W2895850339 @default.
- W3135360879 cites W2901300494 @default.
- W3135360879 cites W2903475856 @default.
- W3135360879 cites W2920326761 @default.
- W3135360879 cites W2921887739 @default.
- W3135360879 cites W2944675655 @default.
- W3135360879 cites W2963150697 @default.
- W3135360879 cites W2966333895 @default.
- W3135360879 cites W2978681345 @default.
- W3135360879 cites W2980323948 @default.
- W3135360879 cites W2991286928 @default.
- W3135360879 cites W2995095597 @default.
- W3135360879 cites W2997506625 @default.
- W3135360879 cites W3011984888 @default.
- W3135360879 cites W3012139957 @default.
- W3135360879 cites W3035067918 @default.
- W3135360879 cites W3038065749 @default.
- W3135360879 cites W3038841624 @default.
- W3135360879 cites W3091403851 @default.
- W3135360879 cites W3097841683 @default.
- W3135360879 cites W639708223 @default.
- W3135360879 doi "https://doi.org/10.1002/mp.14810" @default.
- W3135360879 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33655548" @default.
- W3135360879 hasPublicationYear "2021" @default.
- W3135360879 type Work @default.
- W3135360879 sameAs 3135360879 @default.
- W3135360879 citedByCount "18" @default.
- W3135360879 countsByYear W31353608792021 @default.
- W3135360879 countsByYear W31353608792022 @default.
- W3135360879 countsByYear W31353608792023 @default.
- W3135360879 crossrefType "journal-article" @default.
- W3135360879 hasAuthorship W3135360879A5000658694 @default.
- W3135360879 hasAuthorship W3135360879A5009731683 @default.
- W3135360879 hasAuthorship W3135360879A5011903902 @default.
- W3135360879 hasAuthorship W3135360879A5026088869 @default.
- W3135360879 hasAuthorship W3135360879A5030054597 @default.
- W3135360879 hasAuthorship W3135360879A5032192226 @default.
- W3135360879 hasAuthorship W3135360879A5036226868 @default.
- W3135360879 hasAuthorship W3135360879A5048786190 @default.
- W3135360879 hasAuthorship W3135360879A5080256711 @default.
- W3135360879 hasConcept C108583219 @default.
- W3135360879 hasConcept C138885662 @default.
- W3135360879 hasConcept C146849305 @default.
- W3135360879 hasConcept C153180895 @default.
- W3135360879 hasConcept C154945302 @default.
- W3135360879 hasConcept C2776401178 @default.
- W3135360879 hasConcept C2989005 @default.
- W3135360879 hasConcept C31972630 @default.
- W3135360879 hasConcept C41008148 @default.
- W3135360879 hasConcept C41895202 @default.
- W3135360879 hasConcept C71924100 @default.
- W3135360879 hasConcept C81363708 @default.
- W3135360879 hasConceptScore W3135360879C108583219 @default.
- W3135360879 hasConceptScore W3135360879C138885662 @default.
- W3135360879 hasConceptScore W3135360879C146849305 @default.
- W3135360879 hasConceptScore W3135360879C153180895 @default.
- W3135360879 hasConceptScore W3135360879C154945302 @default.
- W3135360879 hasConceptScore W3135360879C2776401178 @default.
- W3135360879 hasConceptScore W3135360879C2989005 @default.
- W3135360879 hasConceptScore W3135360879C31972630 @default.
- W3135360879 hasConceptScore W3135360879C41008148 @default.
- W3135360879 hasConceptScore W3135360879C41895202 @default.
- W3135360879 hasConceptScore W3135360879C71924100 @default.
- W3135360879 hasConceptScore W3135360879C81363708 @default.
- W3135360879 hasIssue "6" @default.
- W3135360879 hasLocation W31353608791 @default.
- W3135360879 hasOpenAccess W3135360879 @default.
- W3135360879 hasPrimaryLocation W31353608791 @default.
- W3135360879 hasRelatedWork W2731899572 @default.