Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135416650> ?p ?o ?g. }
- W3135416650 endingPage "e00170" @default.
- W3135416650 startingPage "e00170" @default.
- W3135416650 abstract "Increasing understanding of metabolic and regulatory networks underlying microbial physiology has enabled creation of progressively more complex synthetic biological systems for biochemical, biomedical, agricultural, and environmental applications. However, despite best efforts, confounding phenotypes still emerge from unforeseen interplay between biological parts, and the design of robust and modular biological systems remains elusive. Such interactions are difficult to predict when designing synthetic systems and may manifest during experimental testing as inefficiencies that need to be overcome. Transforming organisms such as Escherichia coli into microbial factories is achieved via several engineering strategies, used individually or in combination, with the goal of maximizing the production of chosen target compounds. One technique relies on suppressing or overexpressing selected genes; another involves introducing heterologous enzymes into a microbial host. These modifications steer mass flux towards the set of desired metabolites but may create unexpected interactions. In this work, we develop a computational method, termed M etabolic D isruption Work flow ( MDFlow ), for discovering interactions and network disruptions arising from enzyme promiscuity – the ability of enzymes to act on a wide range of molecules that are structurally similar to their native substrates. We apply MDFlow to two experimentally verified cases where strains with essential genes knocked out are rescued by interactions resulting from overexpression of one or more other genes. We demonstrate how enzyme promiscuity may aid cells in adapting to disruptions of essential metabolic functions. We then apply MDFlow to predict and evaluate a number of putative promiscuous reactions that can interfere with two heterologous pathways designed for 3-hydroxypropionic acid (3-HP) production. Using MDFlow , we can identify putative enzyme promiscuity and the subsequent formation of unintended and undesirable byproducts that are not only disruptive to the host metabolism but also to the intended end-objective of high biosynthetic productivity and yield. As we demonstrate, MDFlow provides an innovative workflow to systematically identify incompatibilities between the native metabolism of the host and its engineered modifications due to enzyme promiscuity. • Engineering modifications to cellular hosts result in undesirable byproducts. • Metabolic Disruption: changes in engineered host due to enzyme promiscuity. • Metabolic Disruption Workflow ( MDFlow ) uncovers metabolic disruption. • MDFlow corroborates previously experimentally verified promiscuous interactions. • MDFlow compares disruption due to heterologous pathways targeting 3-HP production." @default.
- W3135416650 created "2021-03-15" @default.
- W3135416650 creator A5010081411 @default.
- W3135416650 creator A5021301796 @default.
- W3135416650 creator A5026838650 @default.
- W3135416650 creator A5048817284 @default.
- W3135416650 creator A5054090921 @default.
- W3135416650 creator A5085202274 @default.
- W3135416650 date "2021-06-01" @default.
- W3135416650 modified "2023-09-24" @default.
- W3135416650 title "Analysis of metabolic network disruption in engineered microbial hosts due to enzyme promiscuity" @default.
- W3135416650 cites W1463493509 @default.
- W3135416650 cites W1500652345 @default.
- W3135416650 cites W1508604947 @default.
- W3135416650 cites W1934481644 @default.
- W3135416650 cites W1972549326 @default.
- W3135416650 cites W1978119727 @default.
- W3135416650 cites W1988208435 @default.
- W3135416650 cites W1997301914 @default.
- W3135416650 cites W1997733142 @default.
- W3135416650 cites W1997996256 @default.
- W3135416650 cites W2001602167 @default.
- W3135416650 cites W2009994063 @default.
- W3135416650 cites W2011301426 @default.
- W3135416650 cites W2014063825 @default.
- W3135416650 cites W2018750966 @default.
- W3135416650 cites W2021285318 @default.
- W3135416650 cites W2022374283 @default.
- W3135416650 cites W2022741035 @default.
- W3135416650 cites W2030558212 @default.
- W3135416650 cites W2032384026 @default.
- W3135416650 cites W2042452225 @default.
- W3135416650 cites W2044172420 @default.
- W3135416650 cites W2048465561 @default.
- W3135416650 cites W2050265985 @default.
- W3135416650 cites W2052461285 @default.
- W3135416650 cites W2058141842 @default.
- W3135416650 cites W2065666511 @default.
- W3135416650 cites W2072473446 @default.
- W3135416650 cites W2077488126 @default.
- W3135416650 cites W2078355959 @default.
- W3135416650 cites W2081191597 @default.
- W3135416650 cites W2089121522 @default.
- W3135416650 cites W2096004952 @default.
- W3135416650 cites W2102164505 @default.
- W3135416650 cites W2111967267 @default.
- W3135416650 cites W2113531097 @default.
- W3135416650 cites W2116976883 @default.
- W3135416650 cites W2125122419 @default.
- W3135416650 cites W2125859860 @default.
- W3135416650 cites W2128312954 @default.
- W3135416650 cites W2132207273 @default.
- W3135416650 cites W2135900956 @default.
- W3135416650 cites W2136536485 @default.
- W3135416650 cites W2147472054 @default.
- W3135416650 cites W2150153765 @default.
- W3135416650 cites W2156389360 @default.
- W3135416650 cites W2162082704 @default.
- W3135416650 cites W2166879168 @default.
- W3135416650 cites W2168166495 @default.
- W3135416650 cites W2201696856 @default.
- W3135416650 cites W2291481849 @default.
- W3135416650 cites W2466795701 @default.
- W3135416650 cites W2561960911 @default.
- W3135416650 cites W2764202526 @default.
- W3135416650 cites W2796410048 @default.
- W3135416650 cites W2907470641 @default.
- W3135416650 cites W2950223937 @default.
- W3135416650 cites W2970801850 @default.
- W3135416650 cites W3019108305 @default.
- W3135416650 cites W4238473188 @default.
- W3135416650 doi "https://doi.org/10.1016/j.mec.2021.e00170" @default.
- W3135416650 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8039717" @default.
- W3135416650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33850714" @default.
- W3135416650 hasPublicationYear "2021" @default.
- W3135416650 type Work @default.
- W3135416650 sameAs 3135416650 @default.
- W3135416650 citedByCount "7" @default.
- W3135416650 countsByYear W31354166502021 @default.
- W3135416650 countsByYear W31354166502022 @default.
- W3135416650 countsByYear W31354166502023 @default.
- W3135416650 crossrefType "journal-article" @default.
- W3135416650 hasAuthorship W3135416650A5010081411 @default.
- W3135416650 hasAuthorship W3135416650A5021301796 @default.
- W3135416650 hasAuthorship W3135416650A5026838650 @default.
- W3135416650 hasAuthorship W3135416650A5048817284 @default.
- W3135416650 hasAuthorship W3135416650A5054090921 @default.
- W3135416650 hasAuthorship W3135416650A5085202274 @default.
- W3135416650 hasBestOaLocation W31354166501 @default.
- W3135416650 hasConcept C101810790 @default.
- W3135416650 hasConcept C104317684 @default.
- W3135416650 hasConcept C127413603 @default.
- W3135416650 hasConcept C152662350 @default.
- W3135416650 hasConcept C178790620 @default.
- W3135416650 hasConcept C183696295 @default.
- W3135416650 hasConcept C185592680 @default.
- W3135416650 hasConcept C18903297 @default.
- W3135416650 hasConcept C191908910 @default.