Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135465617> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3135465617 endingPage "7" @default.
- W3135465617 startingPage "040502" @default.
- W3135465617 abstract "In a network information society, there are many occasions where people’s behaviors need to be tracked, photographed, and recognized. Biometric recognition technologies are considered to be one of the most effective solutions. Traditional methods mostly use graph structure and deformed component model to design two-dimensional (2D) human body component detectors, and apply graph models to establish the connectivity of each component. The recognition design process is simple, but the accuracy of recognition and tracking effect applied in monitoring image acquisition is not high. The improved particle swarm optimization algorithm is used to determine the particle structure, and the binary bit string is used to represent the particle structure. The support vector machine (SVM) parameters of discrete particles are optimized, and the synchronous optimization design of feature selection and SVM parameters is carried out to realize the synchronous optimization of portrait feature subset and SVM parameters in discrete space. Through in-depth research, the extracted feature subsets can be effectively optimized and selected, and the parameters of SVM model can be optimized synchronously. The discrete particle structure is associated with the SVM parameters to achieve feature selection and SVM parameter synchronization and optimization. It is not only superior to traditional algorithms in terms of recognition rate, but also reduces the feature dimension and shortens the recognition time. The deep feature recognition built on the learning machine is not easy to diverge and can effectively adjust the particle speed to the global optimal, which is more effective than the particle swarm algorithm to search for the global optimal solution, and has better robustness. In the experiments, the research content of the article is compared with the traditional methods to test and analysis. The results show that the method optimizes the selection of feature subset and eliminates a large number of invalid features. The method not only reduces space complexity and shortens recognition time, but also improves recognition rate. The dimension of feature subset dimensions are superior to those extracted by other algorithms." @default.
- W3135465617 created "2021-03-15" @default.
- W3135465617 creator A5080902896 @default.
- W3135465617 creator A5085840960 @default.
- W3135465617 date "2021-07-01" @default.
- W3135465617 modified "2023-09-27" @default.
- W3135465617 title "Study on Portrait Tracking Technology of Deep Feature Learning in Monitoring Image Acquisition" @default.
- W3135465617 cites W2889637463 @default.
- W3135465617 cites W2952722698 @default.
- W3135465617 cites W2952870870 @default.
- W3135465617 cites W2955146064 @default.
- W3135465617 cites W2956932426 @default.
- W3135465617 cites W2971466735 @default.
- W3135465617 cites W2975286596 @default.
- W3135465617 cites W2976714898 @default.
- W3135465617 cites W2981368998 @default.
- W3135465617 cites W2999005311 @default.
- W3135465617 cites W2999305385 @default.
- W3135465617 cites W3001173864 @default.
- W3135465617 cites W3017034739 @default.
- W3135465617 cites W3022385356 @default.
- W3135465617 cites W3027130293 @default.
- W3135465617 cites W3032413505 @default.
- W3135465617 cites W3081867518 @default.
- W3135465617 doi "https://doi.org/10.2352/j.imagingsci.technol.2021.65.4.040502" @default.
- W3135465617 hasPublicationYear "2021" @default.
- W3135465617 type Work @default.
- W3135465617 sameAs 3135465617 @default.
- W3135465617 citedByCount "0" @default.
- W3135465617 crossrefType "journal-article" @default.
- W3135465617 hasAuthorship W3135465617A5080902896 @default.
- W3135465617 hasAuthorship W3135465617A5085840960 @default.
- W3135465617 hasBestOaLocation W31354656171 @default.
- W3135465617 hasConcept C119857082 @default.
- W3135465617 hasConcept C12267149 @default.
- W3135465617 hasConcept C138885662 @default.
- W3135465617 hasConcept C148483581 @default.
- W3135465617 hasConcept C153180895 @default.
- W3135465617 hasConcept C154945302 @default.
- W3135465617 hasConcept C2776401178 @default.
- W3135465617 hasConcept C41008148 @default.
- W3135465617 hasConcept C41895202 @default.
- W3135465617 hasConcept C83665646 @default.
- W3135465617 hasConcept C85617194 @default.
- W3135465617 hasConceptScore W3135465617C119857082 @default.
- W3135465617 hasConceptScore W3135465617C12267149 @default.
- W3135465617 hasConceptScore W3135465617C138885662 @default.
- W3135465617 hasConceptScore W3135465617C148483581 @default.
- W3135465617 hasConceptScore W3135465617C153180895 @default.
- W3135465617 hasConceptScore W3135465617C154945302 @default.
- W3135465617 hasConceptScore W3135465617C2776401178 @default.
- W3135465617 hasConceptScore W3135465617C41008148 @default.
- W3135465617 hasConceptScore W3135465617C41895202 @default.
- W3135465617 hasConceptScore W3135465617C83665646 @default.
- W3135465617 hasConceptScore W3135465617C85617194 @default.
- W3135465617 hasIssue "4" @default.
- W3135465617 hasLocation W31354656171 @default.
- W3135465617 hasOpenAccess W3135465617 @default.
- W3135465617 hasPrimaryLocation W31354656171 @default.
- W3135465617 hasRelatedWork W2008870648 @default.
- W3135465617 hasRelatedWork W2153189372 @default.
- W3135465617 hasRelatedWork W2160451891 @default.
- W3135465617 hasRelatedWork W2348964713 @default.
- W3135465617 hasRelatedWork W2374776489 @default.
- W3135465617 hasRelatedWork W2384093694 @default.
- W3135465617 hasRelatedWork W3105251098 @default.
- W3135465617 hasRelatedWork W635603759 @default.
- W3135465617 hasRelatedWork W2187500075 @default.
- W3135465617 hasRelatedWork W2345184372 @default.
- W3135465617 hasVolume "65" @default.
- W3135465617 isParatext "false" @default.
- W3135465617 isRetracted "false" @default.
- W3135465617 magId "3135465617" @default.
- W3135465617 workType "article" @default.