Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135477338> ?p ?o ?g. }
- W3135477338 endingPage "2350" @default.
- W3135477338 startingPage "2336" @default.
- W3135477338 abstract "There are large amounts of small-and medium-span girder bridges which bear structural similarity, while the large-scale bridge structures are generally limited in the timely applications of structural vibration characteristics. Therefore, in this study a framework based on machine learning models was proposed to analyze the vibration characteristics of specific line bridge groups. The probability distributions of structural, geometric, and material properties of bridge groups in specific lines were obtained using statistical tools and a Latin hypercube sampling method was used to generate reasonable sample sets for the bridges group, and parameterized finite element models of the bridges were established. Then, the optimal models were tuned and determined to predict fundamental mode and period by the 10-fold cross-validation method applying the numerical simulation results. This study’s results showed that the random forest models divided the vibration modes of the bridge groups into the longitudinal vibrations of the main girders and the longitudinal vibrations of the adjacent spans and side piers with a classification accuracy of greater than 90%, while the artificial neural network models exhibited the lowest normalized mean square error for the periods. The periods mainly ranged between 0.7 and 1.5 s. Furthermore, the bearing settings, ratios of the pier height to section diameters, and boundary types were determined to be the most significant properties influencing the fundamental modes and periods of the examined bridges, by respectively observing the reduced value of the random forest Gini indices and distribution of the generalized weight value of the input variables in artificial neural networks. This study provides an intelligent and efficient method for obtaining vibration characteristics of bridges group for a specific network." @default.
- W3135477338 created "2021-03-15" @default.
- W3135477338 creator A5053417087 @default.
- W3135477338 creator A5055071328 @default.
- W3135477338 creator A5057000641 @default.
- W3135477338 date "2021-03-03" @default.
- W3135477338 modified "2023-10-11" @default.
- W3135477338 title "Vibration characteristic analyses of medium-and small-span girder bridge groups in highway systems based on machine learning models" @default.
- W3135477338 cites W1563088657 @default.
- W3135477338 cites W1735309556 @default.
- W3135477338 cites W1985161448 @default.
- W3135477338 cites W2042372120 @default.
- W3135477338 cites W2055591121 @default.
- W3135477338 cites W2114502876 @default.
- W3135477338 cites W2125415054 @default.
- W3135477338 cites W2125660358 @default.
- W3135477338 cites W2137983211 @default.
- W3135477338 cites W2156747774 @default.
- W3135477338 cites W2337301685 @default.
- W3135477338 cites W2412502603 @default.
- W3135477338 cites W2460518765 @default.
- W3135477338 cites W2748988943 @default.
- W3135477338 cites W2911964244 @default.
- W3135477338 cites W2940841169 @default.
- W3135477338 cites W2963587403 @default.
- W3135477338 cites W2981416566 @default.
- W3135477338 cites W3004426305 @default.
- W3135477338 cites W3010401005 @default.
- W3135477338 doi "https://doi.org/10.1177/1369433221997722" @default.
- W3135477338 hasPublicationYear "2021" @default.
- W3135477338 type Work @default.
- W3135477338 sameAs 3135477338 @default.
- W3135477338 citedByCount "7" @default.
- W3135477338 countsByYear W31354773382022 @default.
- W3135477338 countsByYear W31354773382023 @default.
- W3135477338 crossrefType "journal-article" @default.
- W3135477338 hasAuthorship W3135477338A5053417087 @default.
- W3135477338 hasAuthorship W3135477338A5055071328 @default.
- W3135477338 hasAuthorship W3135477338A5057000641 @default.
- W3135477338 hasConcept C100776233 @default.
- W3135477338 hasConcept C105795698 @default.
- W3135477338 hasConcept C106131492 @default.
- W3135477338 hasConcept C119599485 @default.
- W3135477338 hasConcept C121332964 @default.
- W3135477338 hasConcept C126322002 @default.
- W3135477338 hasConcept C127413603 @default.
- W3135477338 hasConcept C127416549 @default.
- W3135477338 hasConcept C135628077 @default.
- W3135477338 hasConcept C140779682 @default.
- W3135477338 hasConcept C157892014 @default.
- W3135477338 hasConcept C189928594 @default.
- W3135477338 hasConcept C19499675 @default.
- W3135477338 hasConcept C196316656 @default.
- W3135477338 hasConcept C198394728 @default.
- W3135477338 hasConcept C20820323 @default.
- W3135477338 hasConcept C2778753569 @default.
- W3135477338 hasConcept C33923547 @default.
- W3135477338 hasConcept C62520636 @default.
- W3135477338 hasConcept C66938386 @default.
- W3135477338 hasConcept C71924100 @default.
- W3135477338 hasConceptScore W3135477338C100776233 @default.
- W3135477338 hasConceptScore W3135477338C105795698 @default.
- W3135477338 hasConceptScore W3135477338C106131492 @default.
- W3135477338 hasConceptScore W3135477338C119599485 @default.
- W3135477338 hasConceptScore W3135477338C121332964 @default.
- W3135477338 hasConceptScore W3135477338C126322002 @default.
- W3135477338 hasConceptScore W3135477338C127413603 @default.
- W3135477338 hasConceptScore W3135477338C127416549 @default.
- W3135477338 hasConceptScore W3135477338C135628077 @default.
- W3135477338 hasConceptScore W3135477338C140779682 @default.
- W3135477338 hasConceptScore W3135477338C157892014 @default.
- W3135477338 hasConceptScore W3135477338C189928594 @default.
- W3135477338 hasConceptScore W3135477338C19499675 @default.
- W3135477338 hasConceptScore W3135477338C196316656 @default.
- W3135477338 hasConceptScore W3135477338C198394728 @default.
- W3135477338 hasConceptScore W3135477338C20820323 @default.
- W3135477338 hasConceptScore W3135477338C2778753569 @default.
- W3135477338 hasConceptScore W3135477338C33923547 @default.
- W3135477338 hasConceptScore W3135477338C62520636 @default.
- W3135477338 hasConceptScore W3135477338C66938386 @default.
- W3135477338 hasConceptScore W3135477338C71924100 @default.
- W3135477338 hasIssue "11" @default.
- W3135477338 hasLocation W31354773381 @default.
- W3135477338 hasOpenAccess W3135477338 @default.
- W3135477338 hasPrimaryLocation W31354773381 @default.
- W3135477338 hasRelatedWork W2358792019 @default.
- W3135477338 hasRelatedWork W2365396177 @default.
- W3135477338 hasRelatedWork W2367043156 @default.
- W3135477338 hasRelatedWork W2376588455 @default.
- W3135477338 hasRelatedWork W2383961505 @default.
- W3135477338 hasRelatedWork W2385245534 @default.
- W3135477338 hasRelatedWork W2387048303 @default.
- W3135477338 hasRelatedWork W2387081719 @default.
- W3135477338 hasRelatedWork W2393678086 @default.
- W3135477338 hasRelatedWork W575219528 @default.
- W3135477338 hasVolume "24" @default.
- W3135477338 isParatext "false" @default.
- W3135477338 isRetracted "false" @default.