Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135514141> ?p ?o ?g. }
- W3135514141 endingPage "120205" @default.
- W3135514141 startingPage "120205" @default.
- W3135514141 abstract "Accurately predicting the lifetime of lithium-ion batteries in early cycles is crucial for ensuring the safety and reliability, and accelerating the battery development cycle. However, most of existing studies presented poor prediction results for early prediction, due to the nonlinear battery capacity fade with negligible variation in early cycles. In this paper, to achieve an accurate early-cycle prediction of battery lifetime, a comprehensive machine learning (ML) based framework containing three modules, the feature extraction, feature selection, and machine learning based prediction, is proposed. First, by analysing the evolution pattern of various informative parameters, forty-two features are manually crafted based on the first-100-cycle charge-discharge raw data. Second, to manage feature irrelevancy and redundancy, four typical feature selection methods are adopted to generate an optimal lower-dimensional feature subset. Finally, the selected features are fed into six representative ML models to effectively predict the battery lifetime. Numerical experiments and paired t-test are conducted to statistically evaluate the performance of the proposed framework. Results show that the wrapper-based feature selection method outperforms other methods, and significantly improves the prediction performance of subsequent ML models. Both before and after wrapper feature selection, the elastic net, Gaussian process regression, and support vector machine present better performance than other complex ML prediction models. The support vector machine model combined with wrapper feature selection statistically presents the best result for battery lifetime prediction, with a root-of-mean-square-error of 115 cycles, and a R2 of 0.90. Finally, when compared with an existing work, the root-of-mean-square-error is substantially decreased from 173 to 115 cycles, by using the proposed framework." @default.
- W3135514141 created "2021-03-15" @default.
- W3135514141 creator A5057829958 @default.
- W3135514141 creator A5069992162 @default.
- W3135514141 creator A5072153786 @default.
- W3135514141 creator A5082849266 @default.
- W3135514141 creator A5086791845 @default.
- W3135514141 date "2021-06-01" @default.
- W3135514141 modified "2023-10-14" @default.
- W3135514141 title "Early prediction of battery lifetime via a machine learning based framework" @default.
- W3135514141 cites W1628954589 @default.
- W3135514141 cites W1976543683 @default.
- W3135514141 cites W1998803278 @default.
- W3135514141 cites W2052263106 @default.
- W3135514141 cites W2064224999 @default.
- W3135514141 cites W2078279667 @default.
- W3135514141 cites W2126770114 @default.
- W3135514141 cites W2167101736 @default.
- W3135514141 cites W2183659962 @default.
- W3135514141 cites W2293231618 @default.
- W3135514141 cites W2342265232 @default.
- W3135514141 cites W2343420905 @default.
- W3135514141 cites W2351263822 @default.
- W3135514141 cites W2547598012 @default.
- W3135514141 cites W2559769392 @default.
- W3135514141 cites W2563343938 @default.
- W3135514141 cites W2586311465 @default.
- W3135514141 cites W2612210564 @default.
- W3135514141 cites W2748357818 @default.
- W3135514141 cites W2767663538 @default.
- W3135514141 cites W2770203925 @default.
- W3135514141 cites W2774791859 @default.
- W3135514141 cites W2774891939 @default.
- W3135514141 cites W2778259406 @default.
- W3135514141 cites W2790625295 @default.
- W3135514141 cites W2793702125 @default.
- W3135514141 cites W2796568833 @default.
- W3135514141 cites W2883525675 @default.
- W3135514141 cites W2895147187 @default.
- W3135514141 cites W2906125019 @default.
- W3135514141 cites W2910719185 @default.
- W3135514141 cites W2915085430 @default.
- W3135514141 cites W2924382816 @default.
- W3135514141 cites W2957056027 @default.
- W3135514141 cites W2966169983 @default.
- W3135514141 cites W2985426613 @default.
- W3135514141 cites W3029611275 @default.
- W3135514141 cites W3038630767 @default.
- W3135514141 cites W3062552330 @default.
- W3135514141 cites W3109435056 @default.
- W3135514141 cites W3119376535 @default.
- W3135514141 cites W3119560693 @default.
- W3135514141 cites W3120705961 @default.
- W3135514141 cites W3125035928 @default.
- W3135514141 cites W4289236186 @default.
- W3135514141 doi "https://doi.org/10.1016/j.energy.2021.120205" @default.
- W3135514141 hasPublicationYear "2021" @default.
- W3135514141 type Work @default.
- W3135514141 sameAs 3135514141 @default.
- W3135514141 citedByCount "77" @default.
- W3135514141 countsByYear W31355141412021 @default.
- W3135514141 countsByYear W31355141412022 @default.
- W3135514141 countsByYear W31355141412023 @default.
- W3135514141 crossrefType "journal-article" @default.
- W3135514141 hasAuthorship W3135514141A5057829958 @default.
- W3135514141 hasAuthorship W3135514141A5069992162 @default.
- W3135514141 hasAuthorship W3135514141A5072153786 @default.
- W3135514141 hasAuthorship W3135514141A5082849266 @default.
- W3135514141 hasAuthorship W3135514141A5086791845 @default.
- W3135514141 hasConcept C105795698 @default.
- W3135514141 hasConcept C119857082 @default.
- W3135514141 hasConcept C121332964 @default.
- W3135514141 hasConcept C12267149 @default.
- W3135514141 hasConcept C127413603 @default.
- W3135514141 hasConcept C138885662 @default.
- W3135514141 hasConcept C139945424 @default.
- W3135514141 hasConcept C148483581 @default.
- W3135514141 hasConcept C152124472 @default.
- W3135514141 hasConcept C153180895 @default.
- W3135514141 hasConcept C154945302 @default.
- W3135514141 hasConcept C163258240 @default.
- W3135514141 hasConcept C200601418 @default.
- W3135514141 hasConcept C2776401178 @default.
- W3135514141 hasConcept C33923547 @default.
- W3135514141 hasConcept C41008148 @default.
- W3135514141 hasConcept C41895202 @default.
- W3135514141 hasConcept C43214815 @default.
- W3135514141 hasConcept C45804977 @default.
- W3135514141 hasConcept C555008776 @default.
- W3135514141 hasConcept C62520636 @default.
- W3135514141 hasConceptScore W3135514141C105795698 @default.
- W3135514141 hasConceptScore W3135514141C119857082 @default.
- W3135514141 hasConceptScore W3135514141C121332964 @default.
- W3135514141 hasConceptScore W3135514141C12267149 @default.
- W3135514141 hasConceptScore W3135514141C127413603 @default.
- W3135514141 hasConceptScore W3135514141C138885662 @default.
- W3135514141 hasConceptScore W3135514141C139945424 @default.
- W3135514141 hasConceptScore W3135514141C148483581 @default.