Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135515631> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3135515631 endingPage "22" @default.
- W3135515631 startingPage "IA" @default.
- W3135515631 abstract "Abstract The delivery of radiation for the treatment of cancer is a complicated process that requires both clinical and technical expertise to ensure radiation treatments are safe and effective. Sub-optimal radiation treatments have the potential to result in significant detriment to the patient and several studies have shown radiation treatments, which deviate from established clinical guidelines, result in worse patient outcomes. Therefore, the current radiation treatment process requires substantial multi-disciplinary resources to both generate and verify radiation treatments are of high-quality. In this talk, a previously validated machine learning platform customized for radiation oncology will be presented. The method automatically learns based on data from thousands of previously treated patients which relationships and patterns in radiation oncology image and treatment data and has been applied for automated data mining activities, automated quality assurance to support expedited radiation treatment review, and for radiation dose prediction to develop new radiation treatments by best deciding where dose should be placed and how dose should be delivered without requiring any manual intervention. Therefore, the method can be used to both generate personalized radiation treatments and to quantitatively score radiation treatments for quality and classify radiation treatments that have errors. The automated platform can readily be integrated into current clinical process to improve efficiency in the radiation treatment planning and plan review processes and to better utilize the vast data we have to ensure we are providing patients with highly personalized radiation treatments. Citation Format: Thomas G. Purdie. Automated treatment planning and quality assurance in radiation oncology [abstract]. In: Proceedings of the AACR Virtual Special Conference on Artificial Intelligence, Diagnosis, and Imaging; 2021 Jan 13-14. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(5_Suppl):Abstract nr IA-22." @default.
- W3135515631 created "2021-03-15" @default.
- W3135515631 creator A5014422858 @default.
- W3135515631 date "2021-03-01" @default.
- W3135515631 modified "2023-09-27" @default.
- W3135515631 title "Abstract IA-22: Automated treatment planning and quality assurance in radiation oncology" @default.
- W3135515631 doi "https://doi.org/10.1158/1557-3265.adi21-ia-22" @default.
- W3135515631 hasPublicationYear "2021" @default.
- W3135515631 type Work @default.
- W3135515631 sameAs 3135515631 @default.
- W3135515631 citedByCount "0" @default.
- W3135515631 crossrefType "journal-article" @default.
- W3135515631 hasAuthorship W3135515631A5014422858 @default.
- W3135515631 hasConcept C106436119 @default.
- W3135515631 hasConcept C111472728 @default.
- W3135515631 hasConcept C111919701 @default.
- W3135515631 hasConcept C126838900 @default.
- W3135515631 hasConcept C138885662 @default.
- W3135515631 hasConcept C142724271 @default.
- W3135515631 hasConcept C19527891 @default.
- W3135515631 hasConcept C201645570 @default.
- W3135515631 hasConcept C2778618615 @default.
- W3135515631 hasConcept C2779530757 @default.
- W3135515631 hasConcept C2909208188 @default.
- W3135515631 hasConcept C2987700449 @default.
- W3135515631 hasConcept C2989005 @default.
- W3135515631 hasConcept C2992520072 @default.
- W3135515631 hasConcept C41008148 @default.
- W3135515631 hasConcept C509974204 @default.
- W3135515631 hasConcept C71924100 @default.
- W3135515631 hasConcept C98045186 @default.
- W3135515631 hasConceptScore W3135515631C106436119 @default.
- W3135515631 hasConceptScore W3135515631C111472728 @default.
- W3135515631 hasConceptScore W3135515631C111919701 @default.
- W3135515631 hasConceptScore W3135515631C126838900 @default.
- W3135515631 hasConceptScore W3135515631C138885662 @default.
- W3135515631 hasConceptScore W3135515631C142724271 @default.
- W3135515631 hasConceptScore W3135515631C19527891 @default.
- W3135515631 hasConceptScore W3135515631C201645570 @default.
- W3135515631 hasConceptScore W3135515631C2778618615 @default.
- W3135515631 hasConceptScore W3135515631C2779530757 @default.
- W3135515631 hasConceptScore W3135515631C2909208188 @default.
- W3135515631 hasConceptScore W3135515631C2987700449 @default.
- W3135515631 hasConceptScore W3135515631C2989005 @default.
- W3135515631 hasConceptScore W3135515631C2992520072 @default.
- W3135515631 hasConceptScore W3135515631C41008148 @default.
- W3135515631 hasConceptScore W3135515631C509974204 @default.
- W3135515631 hasConceptScore W3135515631C71924100 @default.
- W3135515631 hasConceptScore W3135515631C98045186 @default.
- W3135515631 hasIssue "5_Supplement" @default.
- W3135515631 hasLocation W31355156311 @default.
- W3135515631 hasOpenAccess W3135515631 @default.
- W3135515631 hasPrimaryLocation W31355156311 @default.
- W3135515631 hasRelatedWork W2056543828 @default.
- W3135515631 hasRelatedWork W2113616824 @default.
- W3135515631 hasRelatedWork W2124788963 @default.
- W3135515631 hasRelatedWork W2133747887 @default.
- W3135515631 hasRelatedWork W2374418760 @default.
- W3135515631 hasRelatedWork W2411603702 @default.
- W3135515631 hasRelatedWork W2412275291 @default.
- W3135515631 hasRelatedWork W2603821267 @default.
- W3135515631 hasRelatedWork W3135515631 @default.
- W3135515631 hasRelatedWork W4231713525 @default.
- W3135515631 hasVolume "27" @default.
- W3135515631 isParatext "false" @default.
- W3135515631 isRetracted "false" @default.
- W3135515631 magId "3135515631" @default.
- W3135515631 workType "article" @default.