Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135678192> ?p ?o ?g. }
- W3135678192 endingPage "2166" @default.
- W3135678192 startingPage "2148" @default.
- W3135678192 abstract "Summary Waterflooding has been applied either along with primary production to maintain reservoir pressure or later to displace the oil in conventional and heavy-oil reservoirs. Although it is generally accepted that waterflooding of light oil reservoirs in oil-wet systems delivers the least oil compared to either water-wet or intermediate-wet systems, there is a lack of systematic research to study waterflooding of heavy oils in oil-wet reservoirs. This research gives some new insights on the effect of injection velocity and oil viscosity on waterflooding of oil-wet reservoirs. Seven different oils with a broad range of viscosity ranging from 1 to 15 000 mPa·s at 25°C were used in 18 coreflooding experiments in which injection velocity was varied from 0.7 to 24.3 ft/D (2.5×10−6 to 86.0×10−6 m/s). Oil-wet sand (with contact angle of 159.3 ± 3.1°) was used in all the flooding experiments. Breakthrough time was precisely determined using an in-line densitometer installed downstream of the core. Oil-wet microfluidics (164.4 ± 9.7°) were used to study drainage displacement at the pore scale. Our observations suggest the crucial role of the wetting phase (oil) viscosity and the injection velocity in providing the driving force (capillary pressure) required to drain oil-wet pores. Capillarity-driven drainage can significantly increase oil recovery compared to injecting water at smaller pressure gradients. Increasing viscosity of the oil being displaced (keeping velocity the same) increases pressure gradient across the core. This increase in pressure gradient can be translated to the increase in the applied capillary pressure, especially where the oil phase is nearly stationary, such as regions of bypassed oil. When the applied capillary pressure exceeds a threshold, drainage displacement of oil by the nonwetting phase is facilitated. The driving force to push nonwetting phase (water) into the oil-wet pores can also be provided through increasing injection velocity (keeping oil viscosity the same). In this paper, it is demonstrated that in an oil-wet system, increasing velocity until applied capillary pressure exceeds a threshold improves forced drainage to the extent that it increases oil recovery even when viscous fingering strongly influences the displacement. This is consistent with the classical literature on carbonates (deZabala and Kamath 1995). However, the current work extends the classical learnings to a much wider operational envelope on oil-wet sandstones. Across this wider range, the threshold at which applied capillary pressure makes a significant contribution to oil recovery exhibits a systematic variation with oil viscosity. However, the applied capillary pressure; that is, the pressure drop observed during an experiment, does not vary systematically with conventional static parameters or groups and thus cannot be accurately estimated a priori. For this reason, the scaling group presented here incorporates a dynamic capillary pressure and correlates residual oil saturation more effectively than previously proposed static scaling groups." @default.
- W3135678192 created "2021-03-15" @default.
- W3135678192 creator A5014204795 @default.
- W3135678192 creator A5031102600 @default.
- W3135678192 creator A5044789560 @default.
- W3135678192 creator A5064854428 @default.
- W3135678192 creator A5073661236 @default.
- W3135678192 date "2021-03-08" @default.
- W3135678192 modified "2023-09-26" @default.
- W3135678192 title "A Crucial Role of the Applied Capillary Pressure in Drainage Displacement" @default.
- W3135678192 cites W1872366976 @default.
- W3135678192 cites W1965451456 @default.
- W3135678192 cites W1970629260 @default.
- W3135678192 cites W1971066787 @default.
- W3135678192 cites W1976085735 @default.
- W3135678192 cites W1977222162 @default.
- W3135678192 cites W1981445659 @default.
- W3135678192 cites W1981660789 @default.
- W3135678192 cites W1982379456 @default.
- W3135678192 cites W1983270789 @default.
- W3135678192 cites W1987545527 @default.
- W3135678192 cites W1988812722 @default.
- W3135678192 cites W1988974596 @default.
- W3135678192 cites W1989704915 @default.
- W3135678192 cites W1992952762 @default.
- W3135678192 cites W1994163614 @default.
- W3135678192 cites W1997787185 @default.
- W3135678192 cites W1998106898 @default.
- W3135678192 cites W1998576844 @default.
- W3135678192 cites W1998750825 @default.
- W3135678192 cites W2008080414 @default.
- W3135678192 cites W2009499453 @default.
- W3135678192 cites W2009717723 @default.
- W3135678192 cites W2031121845 @default.
- W3135678192 cites W2034218529 @default.
- W3135678192 cites W2038053881 @default.
- W3135678192 cites W2041086559 @default.
- W3135678192 cites W2044098605 @default.
- W3135678192 cites W2044224187 @default.
- W3135678192 cites W2045856899 @default.
- W3135678192 cites W2060087274 @default.
- W3135678192 cites W2061046032 @default.
- W3135678192 cites W2062979420 @default.
- W3135678192 cites W2064853806 @default.
- W3135678192 cites W2067930040 @default.
- W3135678192 cites W2070818468 @default.
- W3135678192 cites W2071696211 @default.
- W3135678192 cites W2075338008 @default.
- W3135678192 cites W2078222845 @default.
- W3135678192 cites W2081398913 @default.
- W3135678192 cites W2087531232 @default.
- W3135678192 cites W2087961445 @default.
- W3135678192 cites W2091045706 @default.
- W3135678192 cites W2093170140 @default.
- W3135678192 cites W2093426061 @default.
- W3135678192 cites W2134588886 @default.
- W3135678192 cites W2211150114 @default.
- W3135678192 cites W2293226036 @default.
- W3135678192 cites W2314093676 @default.
- W3135678192 cites W2331123308 @default.
- W3135678192 cites W2343853467 @default.
- W3135678192 cites W2462535769 @default.
- W3135678192 cites W2473182300 @default.
- W3135678192 cites W2514934973 @default.
- W3135678192 cites W2549637032 @default.
- W3135678192 cites W2586982273 @default.
- W3135678192 cites W2614133350 @default.
- W3135678192 cites W2735472552 @default.
- W3135678192 cites W2808478655 @default.
- W3135678192 cites W2987436817 @default.
- W3135678192 cites W3010647323 @default.
- W3135678192 cites W3025660213 @default.
- W3135678192 cites W3038732077 @default.
- W3135678192 cites W3080833175 @default.
- W3135678192 cites W4300309437 @default.
- W3135678192 cites W4301455501 @default.
- W3135678192 cites W2077729494 @default.
- W3135678192 doi "https://doi.org/10.2118/200624-pa" @default.
- W3135678192 hasPublicationYear "2021" @default.
- W3135678192 type Work @default.
- W3135678192 sameAs 3135678192 @default.
- W3135678192 citedByCount "2" @default.
- W3135678192 countsByYear W31356781922022 @default.
- W3135678192 crossrefType "journal-article" @default.
- W3135678192 hasAuthorship W3135678192A5014204795 @default.
- W3135678192 hasAuthorship W3135678192A5031102600 @default.
- W3135678192 hasAuthorship W3135678192A5044789560 @default.
- W3135678192 hasAuthorship W3135678192A5064854428 @default.
- W3135678192 hasAuthorship W3135678192A5073661236 @default.
- W3135678192 hasConcept C105569014 @default.
- W3135678192 hasConcept C127172972 @default.
- W3135678192 hasConcept C127313418 @default.
- W3135678192 hasConcept C134514944 @default.
- W3135678192 hasConcept C159985019 @default.
- W3135678192 hasConcept C187320778 @default.
- W3135678192 hasConcept C192562407 @default.
- W3135678192 hasConcept C196806460 @default.
- W3135678192 hasConcept C2778059233 @default.