Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135820636> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3135820636 endingPage "17" @default.
- W3135820636 startingPage "1" @default.
- W3135820636 abstract "In the modern scientific literature, there are many reports about the successful application of neural network technologies for solving complex applied problems, in particular, for modeling the urban real estate market. There are neural network models that can perform mass assessment of real estate objects taking into account their construction and operational characteristics. However, these models are static because they do not take into account the changing economic situation over time. Therefore, they quickly become outdated and need frequent updates. In addition, if they are designed for a specific city, they are not suitable for other cities. On the other hand, there are several dynamic models taking into account the overall state of the economy and designed to predict and study the overall price situation in real estate markets. Such dynamic models are not intended for mass real estate appraisals. The aim of this article is to develop a methodology and create a complex model that has the properties of both static and dynamic models. Moreover, our comprehensive model should be suitable for evaluating real estate in many cities at once. This aim is achieved since our model is based on a neural network trained on examples considering both construction and operational characteristics, as well as geographical and environmental characteristics, along with time-changing macroeconomic parameters that describe the economic state of a specific region, country, and the world. A set of examples for training and testing the neural network were formed on the basis of statistical data of real estate markets in a number of Russian cities for the period from 2006 to 2020. Thus, many examples included the data relating to the periods of the economic calm for Russia, along with the periods of crisis, recovery, and growth of the Russian and global economy. Due to this, the model remains relevant with the changes of the international economic situation and it takes into account the specifics of regions. The model proved to be suitable for solving the following tasks: industrial economic analysis, company strategic and operational management, analytical and consulting support of investment, and construction activities of professional market participants. The model can also be used by government agencies authorized to conduct public cadastral assessment for calculating property taxes." @default.
- W3135820636 created "2021-03-15" @default.
- W3135820636 creator A5007766643 @default.
- W3135820636 creator A5015368034 @default.
- W3135820636 creator A5086493587 @default.
- W3135820636 date "2021-03-02" @default.
- W3135820636 modified "2023-09-26" @default.
- W3135820636 title "The Complex Neural Network Model for Mass Appraisal and Scenario Forecasting of the Urban Real Estate Market Value That Adapts Itself to Space and Time" @default.
- W3135820636 cites W1163423353 @default.
- W3135820636 cites W1522981673 @default.
- W3135820636 cites W1988980926 @default.
- W3135820636 cites W2009943061 @default.
- W3135820636 cites W2033230471 @default.
- W3135820636 cites W2035166105 @default.
- W3135820636 cites W2044090912 @default.
- W3135820636 cites W2056195340 @default.
- W3135820636 cites W2061532052 @default.
- W3135820636 cites W2068400611 @default.
- W3135820636 cites W2070300253 @default.
- W3135820636 cites W2143908786 @default.
- W3135820636 cites W2163427003 @default.
- W3135820636 cites W2317758119 @default.
- W3135820636 cites W2585458859 @default.
- W3135820636 cites W2742761449 @default.
- W3135820636 cites W2786598843 @default.
- W3135820636 cites W2790725215 @default.
- W3135820636 cites W2896373023 @default.
- W3135820636 cites W2897952291 @default.
- W3135820636 cites W2908163441 @default.
- W3135820636 cites W2949749508 @default.
- W3135820636 cites W2951282667 @default.
- W3135820636 cites W2962281708 @default.
- W3135820636 cites W2966510182 @default.
- W3135820636 cites W3033853839 @default.
- W3135820636 cites W3042408356 @default.
- W3135820636 doi "https://doi.org/10.1155/2021/5392170" @default.
- W3135820636 hasPublicationYear "2021" @default.
- W3135820636 type Work @default.
- W3135820636 sameAs 3135820636 @default.
- W3135820636 citedByCount "8" @default.
- W3135820636 countsByYear W31358206362021 @default.
- W3135820636 countsByYear W31358206362022 @default.
- W3135820636 countsByYear W31358206362023 @default.
- W3135820636 crossrefType "journal-article" @default.
- W3135820636 hasAuthorship W3135820636A5007766643 @default.
- W3135820636 hasAuthorship W3135820636A5015368034 @default.
- W3135820636 hasAuthorship W3135820636A5086493587 @default.
- W3135820636 hasBestOaLocation W31358206361 @default.
- W3135820636 hasConcept C10138342 @default.
- W3135820636 hasConcept C127413603 @default.
- W3135820636 hasConcept C154527381 @default.
- W3135820636 hasConcept C154945302 @default.
- W3135820636 hasConcept C162324750 @default.
- W3135820636 hasConcept C177264268 @default.
- W3135820636 hasConcept C199360897 @default.
- W3135820636 hasConcept C41008148 @default.
- W3135820636 hasConcept C42475967 @default.
- W3135820636 hasConcept C502083482 @default.
- W3135820636 hasConcept C50644808 @default.
- W3135820636 hasConcept C82279013 @default.
- W3135820636 hasConceptScore W3135820636C10138342 @default.
- W3135820636 hasConceptScore W3135820636C127413603 @default.
- W3135820636 hasConceptScore W3135820636C154527381 @default.
- W3135820636 hasConceptScore W3135820636C154945302 @default.
- W3135820636 hasConceptScore W3135820636C162324750 @default.
- W3135820636 hasConceptScore W3135820636C177264268 @default.
- W3135820636 hasConceptScore W3135820636C199360897 @default.
- W3135820636 hasConceptScore W3135820636C41008148 @default.
- W3135820636 hasConceptScore W3135820636C42475967 @default.
- W3135820636 hasConceptScore W3135820636C502083482 @default.
- W3135820636 hasConceptScore W3135820636C50644808 @default.
- W3135820636 hasConceptScore W3135820636C82279013 @default.
- W3135820636 hasFunder F4320321079 @default.
- W3135820636 hasLocation W31358206361 @default.
- W3135820636 hasOpenAccess W3135820636 @default.
- W3135820636 hasPrimaryLocation W31358206361 @default.
- W3135820636 hasRelatedWork W2108909012 @default.
- W3135820636 hasRelatedWork W2249938055 @default.
- W3135820636 hasRelatedWork W2361146987 @default.
- W3135820636 hasRelatedWork W2378663750 @default.
- W3135820636 hasRelatedWork W2385080807 @default.
- W3135820636 hasRelatedWork W2386387936 @default.
- W3135820636 hasRelatedWork W3162195471 @default.
- W3135820636 hasRelatedWork W4226330007 @default.
- W3135820636 hasRelatedWork W859396555 @default.
- W3135820636 hasRelatedWork W1629725936 @default.
- W3135820636 hasVolume "2021" @default.
- W3135820636 isParatext "false" @default.
- W3135820636 isRetracted "false" @default.
- W3135820636 magId "3135820636" @default.
- W3135820636 workType "article" @default.