Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135821761> ?p ?o ?g. }
- W3135821761 endingPage "107846" @default.
- W3135821761 startingPage "107846" @default.
- W3135821761 abstract "Abstract We develop MAXIM which is electromagnetic wave simulation software based on rigorous coupled-wave analysis. The principal advantage of MAXIM is an intuitive graphical user interface drastically improving the accessibility of the software to who are not familiar with computer programming. Here, we present the basic formulation and computation methods that are incorporated in MAXIM. The computation performance is also evaluated for several didactic examples of dielectric metasurfaces which are the main application of MAXIM. The comparison of the calculation results with commercial software based on a finite-difference time-domain method confirms that the computation results of two programs coincide closely with each other within 1% difference. Considering the easy accessibility, wide availability and high reliability, MAXIM will serve the development of related research fields of metasurfaces and nanophotonics. Program summary Program Title: MAXIM CPC Library link to program files: https://doi.org/10.17632/352jpd593h.1 Licensing provisions: LGPL Programming language: Python 3.8 Supplementary material: User guide and tutorial movie Nature of problem: Time-harmonic electromagnetic wave simulations on multilayered periodic structures composed of isotropic materials. Diffraction occurs as a propagating electromagnetic wave meets periodically-structured arrays of materials that have different refractive indices. Wave parameters such as amplitude and phase of diffracted waves are modulated depending on the structure configuration. The main purpose of this software is to calculate complex transmission and reflection coefficients of diffracted waves from dielectric metasurfaces that are composed of arrays of subwavelength antennas. Solution method: Rigorous coupled-wave analysis associated with an extended scattering matrix method. According to Bloch’s theorem, diffracted waves from periodic structures can be represented as a truncated Fourier series in which the primitive reciprocal vector is the same as that of periodic structures. Appropriate boundary conditions at the interface of a single structure layer enable development of an eigenvalue equation for which the solution gives a scattering matrix of the layer, and the coupling coefficients within it. In the case of a multilayered structure, a total scattering matrix can be obtained using the Redheffer star product, which interconnects scattering matrices of each layer. Total coupling coefficients can be also calculated using the extended Redheffer star product; this ability is a major advantage of the extended scattering matrix method. Diffraction from periodic structures can be fully described by the total scattering matrix and total coupling coefficients. Additional comments including restrictions and unusual features: MAXIM builds on several open-source Python packages including PySide2 [1], Numpy [2], Scipy [3], Pandas [4], Matplotlib [5] and Pyinstaller [6]. References [1] PySide2, https://wiki.qt.io/Qt_for_Python [2] Numpy, https://numpy.org/ [3] Scipy, https://www.scipy.org/ [4] Pandas, https://pandas.pydata.org/ [5] Matplotlib, https://matplotlib.org/ [6] Pyinstaller, https://www.pyinstaller.org/index.html" @default.
- W3135821761 created "2021-03-15" @default.
- W3135821761 creator A5032865984 @default.
- W3135821761 creator A5033298230 @default.
- W3135821761 date "2021-07-01" @default.
- W3135821761 modified "2023-10-17" @default.
- W3135821761 title "MAXIM: Metasurfaces-oriented electromagnetic wave simulation software with intuitive graphical user interfaces" @default.
- W3135821761 cites W1429299901 @default.
- W3135821761 cites W1967879030 @default.
- W3135821761 cites W1969236479 @default.
- W3135821761 cites W1980269750 @default.
- W3135821761 cites W1991873443 @default.
- W3135821761 cites W1994520136 @default.
- W3135821761 cites W1995367634 @default.
- W3135821761 cites W1996709914 @default.
- W3135821761 cites W2005916277 @default.
- W3135821761 cites W2018890340 @default.
- W3135821761 cites W2027029957 @default.
- W3135821761 cites W2059324384 @default.
- W3135821761 cites W2060612859 @default.
- W3135821761 cites W2075782330 @default.
- W3135821761 cites W2083248855 @default.
- W3135821761 cites W2108879267 @default.
- W3135821761 cites W2116057883 @default.
- W3135821761 cites W2118914178 @default.
- W3135821761 cites W2122861838 @default.
- W3135821761 cites W2125087309 @default.
- W3135821761 cites W2126734608 @default.
- W3135821761 cites W2136844372 @default.
- W3135821761 cites W2138808187 @default.
- W3135821761 cites W2146154575 @default.
- W3135821761 cites W2148371719 @default.
- W3135821761 cites W2151024359 @default.
- W3135821761 cites W2160793962 @default.
- W3135821761 cites W2165969375 @default.
- W3135821761 cites W2168784889 @default.
- W3135821761 cites W2256069662 @default.
- W3135821761 cites W2335776074 @default.
- W3135821761 cites W2415475836 @default.
- W3135821761 cites W2472133964 @default.
- W3135821761 cites W2571907177 @default.
- W3135821761 cites W2728258446 @default.
- W3135821761 cites W2776284709 @default.
- W3135821761 cites W2790915754 @default.
- W3135821761 cites W2791405330 @default.
- W3135821761 cites W2792991681 @default.
- W3135821761 cites W2808244704 @default.
- W3135821761 cites W2809160832 @default.
- W3135821761 cites W2889890158 @default.
- W3135821761 cites W2898786106 @default.
- W3135821761 cites W2899797286 @default.
- W3135821761 cites W2912372073 @default.
- W3135821761 cites W2955806549 @default.
- W3135821761 cites W2981290483 @default.
- W3135821761 cites W2995508146 @default.
- W3135821761 cites W3021987096 @default.
- W3135821761 cites W3087254484 @default.
- W3135821761 cites W3087923851 @default.
- W3135821761 cites W3088147060 @default.
- W3135821761 cites W3035191988 @default.
- W3135821761 doi "https://doi.org/10.1016/j.cpc.2021.107846" @default.
- W3135821761 hasPublicationYear "2021" @default.
- W3135821761 type Work @default.
- W3135821761 sameAs 3135821761 @default.
- W3135821761 citedByCount "15" @default.
- W3135821761 countsByYear W31358217612021 @default.
- W3135821761 countsByYear W31358217612022 @default.
- W3135821761 countsByYear W31358217612023 @default.
- W3135821761 crossrefType "journal-article" @default.
- W3135821761 hasAuthorship W3135821761A5032865984 @default.
- W3135821761 hasAuthorship W3135821761A5033298230 @default.
- W3135821761 hasConcept C107457646 @default.
- W3135821761 hasConcept C121332964 @default.
- W3135821761 hasConcept C121684516 @default.
- W3135821761 hasConcept C17744445 @default.
- W3135821761 hasConcept C199360897 @default.
- W3135821761 hasConcept C199539241 @default.
- W3135821761 hasConcept C2775955634 @default.
- W3135821761 hasConcept C2777904410 @default.
- W3135821761 hasConcept C37789001 @default.
- W3135821761 hasConcept C41008148 @default.
- W3135821761 hasConcept C459310 @default.
- W3135821761 hasConceptScore W3135821761C107457646 @default.
- W3135821761 hasConceptScore W3135821761C121332964 @default.
- W3135821761 hasConceptScore W3135821761C121684516 @default.
- W3135821761 hasConceptScore W3135821761C17744445 @default.
- W3135821761 hasConceptScore W3135821761C199360897 @default.
- W3135821761 hasConceptScore W3135821761C199539241 @default.
- W3135821761 hasConceptScore W3135821761C2775955634 @default.
- W3135821761 hasConceptScore W3135821761C2777904410 @default.
- W3135821761 hasConceptScore W3135821761C37789001 @default.
- W3135821761 hasConceptScore W3135821761C41008148 @default.
- W3135821761 hasConceptScore W3135821761C459310 @default.
- W3135821761 hasFunder F4320322030 @default.
- W3135821761 hasFunder F4320322120 @default.
- W3135821761 hasLocation W31358217611 @default.
- W3135821761 hasOpenAccess W3135821761 @default.
- W3135821761 hasPrimaryLocation W31358217611 @default.