Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135844897> ?p ?o ?g. }
- W3135844897 endingPage "663" @default.
- W3135844897 startingPage "650" @default.
- W3135844897 abstract "Recognizing the emotional state of a person within the image in real-world scenarios is a key problem in affective computing and has various promising applications. Local regions in the image, including different objects in the background scene and parts within the foreground body, usually have different contributions to emotion perception of the target person. This, however, has not been well exploited in most existing methods. In this article, we propose to make relational region-level analysis to account for the different contributions of different regions to emotion recognition. For the background scene, we propose a Body-Object Attention (BOA) module to estimate the contributions of background objects to emotion recognition given the target foreground body. Within the foreground body, we propose a Body Part Attention (BPA) module to recalibrate the channel-wise body feature responses to attend on body parts that are more important. Moreover, we propose to model the emotion label dependency in real-world images, considering both the semantic meanings of these labels and their co-occurrence patterns. We evaluate the proposed method on the EMOTIC and CAER-S datasets, and experimental results show the superiority of our method compared with the state-of-the-art algorithms." @default.
- W3135844897 created "2021-03-15" @default.
- W3135844897 creator A5031023511 @default.
- W3135844897 creator A5050613147 @default.
- W3135844897 creator A5059448769 @default.
- W3135844897 date "2023-01-01" @default.
- W3135844897 modified "2023-10-18" @default.
- W3135844897 title "Human Emotion Recognition With Relational Region-Level Analysis" @default.
- W3135844897 cites W1486156117 @default.
- W3135844897 cites W1871419576 @default.
- W3135844897 cites W1981918162 @default.
- W3135844897 cites W2024221294 @default.
- W3135844897 cites W2041649634 @default.
- W3135844897 cites W2053432263 @default.
- W3135844897 cites W2060488580 @default.
- W3135844897 cites W2078951341 @default.
- W3135844897 cites W2080830759 @default.
- W3135844897 cites W2098217009 @default.
- W3135844897 cites W2102985871 @default.
- W3135844897 cites W2103153725 @default.
- W3135844897 cites W2108598243 @default.
- W3135844897 cites W2128042196 @default.
- W3135844897 cites W2156503193 @default.
- W3135844897 cites W2164186291 @default.
- W3135844897 cites W2194775991 @default.
- W3135844897 cites W2237664096 @default.
- W3135844897 cites W2250539671 @default.
- W3135844897 cites W2278113816 @default.
- W3135844897 cites W2329236375 @default.
- W3135844897 cites W2436394355 @default.
- W3135844897 cites W2463598282 @default.
- W3135844897 cites W2593621665 @default.
- W3135844897 cites W2604737966 @default.
- W3135844897 cites W2738672149 @default.
- W3135844897 cites W2739474071 @default.
- W3135844897 cites W2752782242 @default.
- W3135844897 cites W2792824754 @default.
- W3135844897 cites W2793857798 @default.
- W3135844897 cites W2798583514 @default.
- W3135844897 cites W2805097157 @default.
- W3135844897 cites W2805121932 @default.
- W3135844897 cites W2883430806 @default.
- W3135844897 cites W2894871570 @default.
- W3135844897 cites W2917229072 @default.
- W3135844897 cites W2932399282 @default.
- W3135844897 cites W2955058313 @default.
- W3135844897 cites W2963163009 @default.
- W3135844897 cites W2963203586 @default.
- W3135844897 cites W2963300078 @default.
- W3135844897 cites W2963745697 @default.
- W3135844897 cites W2963875806 @default.
- W3135844897 cites W2964080601 @default.
- W3135844897 cites W2964345792 @default.
- W3135844897 cites W2964751875 @default.
- W3135844897 cites W2980175391 @default.
- W3135844897 cites W2982014340 @default.
- W3135844897 cites W3001529617 @default.
- W3135844897 cites W3034520808 @default.
- W3135844897 cites W3035497134 @default.
- W3135844897 doi "https://doi.org/10.1109/taffc.2021.3064918" @default.
- W3135844897 hasPublicationYear "2023" @default.
- W3135844897 type Work @default.
- W3135844897 sameAs 3135844897 @default.
- W3135844897 citedByCount "4" @default.
- W3135844897 countsByYear W31358448972021 @default.
- W3135844897 countsByYear W31358448972022 @default.
- W3135844897 countsByYear W31358448972023 @default.
- W3135844897 crossrefType "journal-article" @default.
- W3135844897 hasAuthorship W3135844897A5031023511 @default.
- W3135844897 hasAuthorship W3135844897A5050613147 @default.
- W3135844897 hasAuthorship W3135844897A5059448769 @default.
- W3135844897 hasConcept C115961682 @default.
- W3135844897 hasConcept C138885662 @default.
- W3135844897 hasConcept C153180895 @default.
- W3135844897 hasConcept C154945302 @default.
- W3135844897 hasConcept C15744967 @default.
- W3135844897 hasConcept C169760540 @default.
- W3135844897 hasConcept C195704467 @default.
- W3135844897 hasConcept C19768560 @default.
- W3135844897 hasConcept C26517878 @default.
- W3135844897 hasConcept C26760741 @default.
- W3135844897 hasConcept C2776141551 @default.
- W3135844897 hasConcept C2776401178 @default.
- W3135844897 hasConcept C2777438025 @default.
- W3135844897 hasConcept C2781238097 @default.
- W3135844897 hasConcept C31972630 @default.
- W3135844897 hasConcept C38652104 @default.
- W3135844897 hasConcept C41008148 @default.
- W3135844897 hasConcept C41895202 @default.
- W3135844897 hasConcept C6438553 @default.
- W3135844897 hasConceptScore W3135844897C115961682 @default.
- W3135844897 hasConceptScore W3135844897C138885662 @default.
- W3135844897 hasConceptScore W3135844897C153180895 @default.
- W3135844897 hasConceptScore W3135844897C154945302 @default.
- W3135844897 hasConceptScore W3135844897C15744967 @default.
- W3135844897 hasConceptScore W3135844897C169760540 @default.
- W3135844897 hasConceptScore W3135844897C195704467 @default.
- W3135844897 hasConceptScore W3135844897C19768560 @default.