Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135859267> ?p ?o ?g. }
- W3135859267 endingPage "326" @default.
- W3135859267 startingPage "295" @default.
- W3135859267 abstract "In this paper we prove the uniform-in-time $L^p$ convergence in the inviscid limit of a family $omega^nu$ of solutions of the $2D$ Navier-Stokes equations towards a renormalized/Lagrangian solution $omega$ of the Euler equations. We also prove that, in the class of solutions with bounded vorticity, it is possible to obtain a rate for the convergence of $omega^nu$ to $omega$ in $L^p$. Finally, we show that solutions of the Euler equations with $L^p$ vorticity, obtained in the vanishing viscosity limit, conserve the kinetic energy. The proofs are given by using both a (stochastic) Lagrangian approach and an Eulerian approach." @default.
- W3135859267 created "2021-03-15" @default.
- W3135859267 creator A5006789726 @default.
- W3135859267 creator A5018399294 @default.
- W3135859267 creator A5082596901 @default.
- W3135859267 date "2021-03-01" @default.
- W3135859267 modified "2023-09-25" @default.
- W3135859267 title "Strong Convergence of the Vorticity for the 2D Euler Equations in the Inviscid Limit" @default.
- W3135859267 cites W103591919 @default.
- W3135859267 cites W1578197303 @default.
- W3135859267 cites W1726508745 @default.
- W3135859267 cites W1975905530 @default.
- W3135859267 cites W1979871687 @default.
- W3135859267 cites W1997538932 @default.
- W3135859267 cites W2000268456 @default.
- W3135859267 cites W2001192987 @default.
- W3135859267 cites W2019042371 @default.
- W3135859267 cites W2022064238 @default.
- W3135859267 cites W2038928070 @default.
- W3135859267 cites W2040580633 @default.
- W3135859267 cites W2047845107 @default.
- W3135859267 cites W2052104757 @default.
- W3135859267 cites W2055021661 @default.
- W3135859267 cites W2068039185 @default.
- W3135859267 cites W2074059808 @default.
- W3135859267 cites W2093375916 @default.
- W3135859267 cites W2141107216 @default.
- W3135859267 cites W2153510147 @default.
- W3135859267 cites W2475709806 @default.
- W3135859267 cites W2946389325 @default.
- W3135859267 cites W2951107366 @default.
- W3135859267 cites W2963204934 @default.
- W3135859267 cites W2963561780 @default.
- W3135859267 cites W2963613358 @default.
- W3135859267 cites W2963851857 @default.
- W3135859267 cites W2969347612 @default.
- W3135859267 cites W3011005655 @default.
- W3135859267 cites W3015353346 @default.
- W3135859267 cites W3088558241 @default.
- W3135859267 cites W3102507613 @default.
- W3135859267 cites W3106460039 @default.
- W3135859267 cites W4231892786 @default.
- W3135859267 doi "https://doi.org/10.1007/s00205-021-01612-z" @default.
- W3135859267 hasPublicationYear "2021" @default.
- W3135859267 type Work @default.
- W3135859267 sameAs 3135859267 @default.
- W3135859267 citedByCount "12" @default.
- W3135859267 countsByYear W31358592672021 @default.
- W3135859267 countsByYear W31358592672022 @default.
- W3135859267 countsByYear W31358592672023 @default.
- W3135859267 crossrefType "journal-article" @default.
- W3135859267 hasAuthorship W3135859267A5006789726 @default.
- W3135859267 hasAuthorship W3135859267A5018399294 @default.
- W3135859267 hasAuthorship W3135859267A5082596901 @default.
- W3135859267 hasBestOaLocation W31358592671 @default.
- W3135859267 hasConcept C119599485 @default.
- W3135859267 hasConcept C121332964 @default.
- W3135859267 hasConcept C127162648 @default.
- W3135859267 hasConcept C127413603 @default.
- W3135859267 hasConcept C134306372 @default.
- W3135859267 hasConcept C140820882 @default.
- W3135859267 hasConcept C151201525 @default.
- W3135859267 hasConcept C162324750 @default.
- W3135859267 hasConcept C200114574 @default.
- W3135859267 hasConcept C2777303404 @default.
- W3135859267 hasConcept C2779557605 @default.
- W3135859267 hasConcept C33923547 @default.
- W3135859267 hasConcept C34388435 @default.
- W3135859267 hasConcept C37914503 @default.
- W3135859267 hasConcept C38409319 @default.
- W3135859267 hasConcept C43058520 @default.
- W3135859267 hasConcept C50522688 @default.
- W3135859267 hasConcept C53469067 @default.
- W3135859267 hasConcept C57869625 @default.
- W3135859267 hasConcept C62520636 @default.
- W3135859267 hasConcept C62884695 @default.
- W3135859267 hasConcept C74650414 @default.
- W3135859267 hasConcept C86252789 @default.
- W3135859267 hasConcept C97355855 @default.
- W3135859267 hasConceptScore W3135859267C119599485 @default.
- W3135859267 hasConceptScore W3135859267C121332964 @default.
- W3135859267 hasConceptScore W3135859267C127162648 @default.
- W3135859267 hasConceptScore W3135859267C127413603 @default.
- W3135859267 hasConceptScore W3135859267C134306372 @default.
- W3135859267 hasConceptScore W3135859267C140820882 @default.
- W3135859267 hasConceptScore W3135859267C151201525 @default.
- W3135859267 hasConceptScore W3135859267C162324750 @default.
- W3135859267 hasConceptScore W3135859267C200114574 @default.
- W3135859267 hasConceptScore W3135859267C2777303404 @default.
- W3135859267 hasConceptScore W3135859267C2779557605 @default.
- W3135859267 hasConceptScore W3135859267C33923547 @default.
- W3135859267 hasConceptScore W3135859267C34388435 @default.
- W3135859267 hasConceptScore W3135859267C37914503 @default.
- W3135859267 hasConceptScore W3135859267C38409319 @default.
- W3135859267 hasConceptScore W3135859267C43058520 @default.
- W3135859267 hasConceptScore W3135859267C50522688 @default.
- W3135859267 hasConceptScore W3135859267C53469067 @default.
- W3135859267 hasConceptScore W3135859267C57869625 @default.