Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135887889> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3135887889 startingPage "2" @default.
- W3135887889 abstract "Locally decodable codes (LDCs) allow any single encoded message symbol to be retrieved from a codeword with good probability by reading only a tiny number of codeword symbols, even if the codeword is partially corrupted. LDCs have surprisingly many applications in computer science and mathematics (we refer to [Yekhanin, 2012; Lovett, 2007] for extensive surveys). But despite their ubiquity, they are poorly understood. Of particular interest is the tradeoff between the codeword length N as a function of message length k when the query complexity - the number of probed codeword symbols - and alphabet size are constant. The Hadamard code is a 2-query LDC of length N = 2^O(k) and this length is optimal in the 2-query regime [Lovett, 2007]. For q ≥ 3, near-exponential gaps persist between the best-known upper and lower bounds. The family of Reed-Muller codes, which generalize the Hadamard code, were for a long time the best-known examples, giving q-query LDCs of length exp(O(k^{1/(q-1)})), until breakthrough constructions of matching vector LDCs of Yekhanin and Efremenko [Yekhanin, 2008; Efremenko, 2012].In contrast with other combinatorial objects such as expander graphs, the probabilistic method has so far not been successfully used to beat the best explicit LDC constructions. In [Lovett, 2007], a probabilistic framework was given that could in principle yield best-possible LDCs, albeit non-constructively. A special instance of this framework connects LDCs with a probabilistic version of Szemeredi’s theorem. The setup for this is as follows: For a finite abelian group G of size N = |G|, let D ⊆ G be a random subset where each element is present with probability ρ independently of all others. For k ≥ 3 and e ∈ (0,1), let E be the event that every subset A ⊆ G of size |A| ≥ e |G| contains a proper k-term arithmetic progression with common difference in D. For fixed e > 0 and sufficiently large N, it is an open problem to determine the smallest value of ρ - denoted ρ_k - such that Pr[E] ≥ 1/2. In [Lovett, 2007] it is shown that there exist k-query LDCs of message length Ω(ρ_k N) and codeword length O(N). As such, Szemeredi’s theorem with random differences, in particular lower bounds on ρ_k, can be used to show the existence of LDCs. Conversely, this connection indirectly implies the best-known upper bounds on ρ_k for all k ≥ 3 [Lovett, 2007; Lovett, 2007]. However, a conjecture from [Lovett, 2007] states that over ℤ_N we have ρ_k ≤ O_k(N^{-1}log N) for all k, which would be best-possible. Truth of this conjecture would imply that over this group, Szemeredi’s theorem with random differences cannot give LDCs better than the Hadamard code. For finite fields, Altman [Lovett, 2007] showed that this is false. In particular, over 𝔽_pⁿ for p odd, he proved that ρ₃ ≥ Ω(p^{-n} n²); generally, ρ_k ≥ Ω(p^{-n} n^{k-1}) holds when p ≥ k+1 [Lovett, 2007]. In turn, these bounds are conjectured to be optimal for the finite-field setting, which would imply that over finite fields, Szemeredi’s theorem with random differences cannot give LDCs better than Reed-Muller codes. The finite-field conjecture is motivated mainly by the possibility that so-called dual functions can be approximated well by polynomial phases, functions of the form e^{2π i P(x)/p} where P is a multivariate polynomial over 𝔽_p. We show that this is false. Using Yekhanin’s matching-vector-code construction, we give dual functions of order k over 𝔽_pⁿ that cannot be approximated in L_∞-distance by polynomial phases of degree k-1. This answers in the negative a natural finite-field analog of a problem of Frantzikinakis over ℕ [Lovett, 2007]." @default.
- W3135887889 created "2021-03-15" @default.
- W3135887889 creator A5036626877 @default.
- W3135887889 creator A5056639791 @default.
- W3135887889 date "2021-01-01" @default.
- W3135887889 modified "2023-09-23" @default.
- W3135887889 title "High-Entropy Dual Functions and Locally Decodable Codes (Extended Abstract)" @default.
- W3135887889 doi "https://doi.org/10.4230/lipics.itcs.2021.76" @default.
- W3135887889 hasPublicationYear "2021" @default.
- W3135887889 type Work @default.
- W3135887889 sameAs 3135887889 @default.
- W3135887889 citedByCount "0" @default.
- W3135887889 crossrefType "proceedings-article" @default.
- W3135887889 hasAuthorship W3135887889A5036626877 @default.
- W3135887889 hasAuthorship W3135887889A5056639791 @default.
- W3135887889 hasConcept C105795698 @default.
- W3135887889 hasConcept C11413529 @default.
- W3135887889 hasConcept C114614502 @default.
- W3135887889 hasConcept C118615104 @default.
- W3135887889 hasConcept C134306372 @default.
- W3135887889 hasConcept C153207627 @default.
- W3135887889 hasConcept C33923547 @default.
- W3135887889 hasConcept C49937458 @default.
- W3135887889 hasConcept C57273362 @default.
- W3135887889 hasConcept C60292330 @default.
- W3135887889 hasConcept C77553402 @default.
- W3135887889 hasConceptScore W3135887889C105795698 @default.
- W3135887889 hasConceptScore W3135887889C11413529 @default.
- W3135887889 hasConceptScore W3135887889C114614502 @default.
- W3135887889 hasConceptScore W3135887889C118615104 @default.
- W3135887889 hasConceptScore W3135887889C134306372 @default.
- W3135887889 hasConceptScore W3135887889C153207627 @default.
- W3135887889 hasConceptScore W3135887889C33923547 @default.
- W3135887889 hasConceptScore W3135887889C49937458 @default.
- W3135887889 hasConceptScore W3135887889C57273362 @default.
- W3135887889 hasConceptScore W3135887889C60292330 @default.
- W3135887889 hasConceptScore W3135887889C77553402 @default.
- W3135887889 hasLocation W31358878891 @default.
- W3135887889 hasOpenAccess W3135887889 @default.
- W3135887889 hasPrimaryLocation W31358878891 @default.
- W3135887889 hasRelatedWork W1587657500 @default.
- W3135887889 hasRelatedWork W1593048952 @default.
- W3135887889 hasRelatedWork W2056884477 @default.
- W3135887889 hasRelatedWork W2094578740 @default.
- W3135887889 hasRelatedWork W2144581009 @default.
- W3135887889 hasRelatedWork W2398977735 @default.
- W3135887889 hasRelatedWork W2404312679 @default.
- W3135887889 hasRelatedWork W2407537632 @default.
- W3135887889 hasRelatedWork W2906838315 @default.
- W3135887889 hasRelatedWork W2949884761 @default.
- W3135887889 hasRelatedWork W2950126429 @default.
- W3135887889 hasRelatedWork W2951858576 @default.
- W3135887889 hasRelatedWork W2956137306 @default.
- W3135887889 hasRelatedWork W3035118655 @default.
- W3135887889 hasRelatedWork W3037199564 @default.
- W3135887889 hasRelatedWork W3090539902 @default.
- W3135887889 hasRelatedWork W3101294093 @default.
- W3135887889 hasRelatedWork W3103903561 @default.
- W3135887889 hasRelatedWork W3159687514 @default.
- W3135887889 hasRelatedWork W3197445909 @default.
- W3135887889 isParatext "false" @default.
- W3135887889 isRetracted "false" @default.
- W3135887889 magId "3135887889" @default.
- W3135887889 workType "article" @default.