Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135891350> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3135891350 endingPage "032004" @default.
- W3135891350 startingPage "032004" @default.
- W3135891350 abstract "An artificial intelligence neural network model is established in this essay to seek a more general method for predicting penetration depth of earth penetrator, to comprehensively analyze the effect of various parameters on penetration depth as well as to predict the penetration depth of earth penetrator.This paper, by means of numerical simulation, and determined the ordnance penetrator warhead curvature radius, the length of the projectile, the density of the projectile,the density of the target protective layer, the elastic modulus of the target protective layer and the hit velocity of the earth penetrator.This six key parameters as the input data of neural network model, and by using numerical simulation to obtain the data needed for training the neural network model samples. According to the characteristics of six input data and one output data of the neural network model, the possible structure of the neural network model is set, and the optimal model structure is selected through training. We built neural network model to forecast the ordnance penetrator penetration depth, analyzes the six key parameter's influence on the depth of penetration, the results show that reducing the warhead curvature radius, increasing the length and density of the projectile, properly increasing the impact velocity of the projectile can improve the penetration ability of the earth penetrating projectile, and increasing the density and elastic modulus of the target protective layer can improve the anti-penetration ability of the protective layer." @default.
- W3135891350 created "2021-03-15" @default.
- W3135891350 creator A5010568355 @default.
- W3135891350 creator A5031255497 @default.
- W3135891350 creator A5034278049 @default.
- W3135891350 creator A5077889793 @default.
- W3135891350 date "2019-06-08" @default.
- W3135891350 modified "2023-09-23" @default.
- W3135891350 title "Prediction of penetration depth of earth penetrator based on neural network" @default.
- W3135891350 cites W2379415842 @default.
- W3135891350 doi "https://doi.org/10.1088/1755-1315/267/3/032004" @default.
- W3135891350 hasPublicationYear "2019" @default.
- W3135891350 type Work @default.
- W3135891350 sameAs 3135891350 @default.
- W3135891350 citedByCount "0" @default.
- W3135891350 crossrefType "journal-article" @default.
- W3135891350 hasAuthorship W3135891350A5010568355 @default.
- W3135891350 hasAuthorship W3135891350A5031255497 @default.
- W3135891350 hasAuthorship W3135891350A5034278049 @default.
- W3135891350 hasAuthorship W3135891350A5077889793 @default.
- W3135891350 hasBestOaLocation W31358913501 @default.
- W3135891350 hasConcept C120665830 @default.
- W3135891350 hasConcept C121332964 @default.
- W3135891350 hasConcept C127413603 @default.
- W3135891350 hasConcept C146978453 @default.
- W3135891350 hasConcept C149617267 @default.
- W3135891350 hasConcept C154945302 @default.
- W3135891350 hasConcept C191897082 @default.
- W3135891350 hasConcept C192562407 @default.
- W3135891350 hasConcept C193493375 @default.
- W3135891350 hasConcept C195065555 @default.
- W3135891350 hasConcept C2524010 @default.
- W3135891350 hasConcept C33923547 @default.
- W3135891350 hasConcept C41008148 @default.
- W3135891350 hasConcept C42475967 @default.
- W3135891350 hasConcept C49304495 @default.
- W3135891350 hasConcept C50644808 @default.
- W3135891350 hasConcept C57879066 @default.
- W3135891350 hasConcept C80107235 @default.
- W3135891350 hasConceptScore W3135891350C120665830 @default.
- W3135891350 hasConceptScore W3135891350C121332964 @default.
- W3135891350 hasConceptScore W3135891350C127413603 @default.
- W3135891350 hasConceptScore W3135891350C146978453 @default.
- W3135891350 hasConceptScore W3135891350C149617267 @default.
- W3135891350 hasConceptScore W3135891350C154945302 @default.
- W3135891350 hasConceptScore W3135891350C191897082 @default.
- W3135891350 hasConceptScore W3135891350C192562407 @default.
- W3135891350 hasConceptScore W3135891350C193493375 @default.
- W3135891350 hasConceptScore W3135891350C195065555 @default.
- W3135891350 hasConceptScore W3135891350C2524010 @default.
- W3135891350 hasConceptScore W3135891350C33923547 @default.
- W3135891350 hasConceptScore W3135891350C41008148 @default.
- W3135891350 hasConceptScore W3135891350C42475967 @default.
- W3135891350 hasConceptScore W3135891350C49304495 @default.
- W3135891350 hasConceptScore W3135891350C50644808 @default.
- W3135891350 hasConceptScore W3135891350C57879066 @default.
- W3135891350 hasConceptScore W3135891350C80107235 @default.
- W3135891350 hasLocation W31358913501 @default.
- W3135891350 hasOpenAccess W3135891350 @default.
- W3135891350 hasPrimaryLocation W31358913501 @default.
- W3135891350 hasRelatedWork W2062153918 @default.
- W3135891350 hasRelatedWork W2358172519 @default.
- W3135891350 hasRelatedWork W2361905704 @default.
- W3135891350 hasRelatedWork W2367054317 @default.
- W3135891350 hasRelatedWork W2369579457 @default.
- W3135891350 hasRelatedWork W2382983757 @default.
- W3135891350 hasRelatedWork W3030744404 @default.
- W3135891350 hasRelatedWork W3180567914 @default.
- W3135891350 hasRelatedWork W4200480584 @default.
- W3135891350 hasRelatedWork W4367171843 @default.
- W3135891350 hasVolume "267" @default.
- W3135891350 isParatext "false" @default.
- W3135891350 isRetracted "false" @default.
- W3135891350 magId "3135891350" @default.
- W3135891350 workType "article" @default.