Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135908090> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3135908090 abstract "Abstract Decision making to optimize the drilling operation is based on a variety of factors, among them real-time interpretation of drilled lithology. Since logging while drilling (LWD) tools are placed some meters above the bit, mechanical drilling parameters are the earliest indicators, although difficult to interpret accurately. This paper presents a novel deep learning methodology using mechanical drilling parameters for lithology classification. A cascade of multilayered perceptrons (MLPs) are trained on historical data from wells on a field operated by Equinor. Rather than an end-to-end approach, the drilling parameters are utilized to estimate LWD sensor readings in an intermediate step using the first MLPs. This allows continuous updates of the models during operation using delayed LWD data. The second MLP takes the virtual LWD estimates as input to predict currently drilled lithology, similar to manual expert interpretation of logs. This configuration takes into account case dependent (mud, BHA, wellbore geometry) and time varying (bit-wear, wellbore friction) relationships between drilling parameters and LWD readings, while assuming a constant rule when utilizing LWD data to classify lithology. Upon completion of training and validation, the system is tested on a separate, unseen wellbore, for which results are presented. Visualizations for true lithology alongside the estimates are given, along with confusion matrices and model accuracy. The system achieves high accuracy on the test set and presents low confusion between classes, meaning that it distinguishes well between the lithologies present in the wellbore. It can be seen that the borders between successive layers of lithology are detected rapidly, which is crucial seen from an optimization standpoint, so the driller may adjust accordingly immediately. It shows promise as an advisory system, capable of accurately classifying currently drilled lithology by continuously adapting to changing downhole conditions. Although we cannot expect perfect estimates of lithology purely based on drilling parameters, we can obtain a preliminary map of the subsurface this way. This novel configuration gives a real-time interpretation of the currently drilled lithology, allowing the driller to take proper actions to optimize the drilling operation in terms of rate of penetration (ROP) and best practices for different lithologies." @default.
- W3135908090 created "2021-03-15" @default.
- W3135908090 creator A5044692320 @default.
- W3135908090 creator A5059193268 @default.
- W3135908090 creator A5070683028 @default.
- W3135908090 date "2021-03-08" @default.
- W3135908090 modified "2023-09-25" @default.
- W3135908090 title "Real-Time Classification of Drilled Lithology from Drilling Data Using Deep Learning with Online Calibration" @default.
- W3135908090 cites W1677182931 @default.
- W3135908090 cites W1682403713 @default.
- W3135908090 cites W1904826605 @default.
- W3135908090 cites W1968376774 @default.
- W3135908090 cites W2000038467 @default.
- W3135908090 cites W2009727399 @default.
- W3135908090 cites W2012390853 @default.
- W3135908090 cites W2076063813 @default.
- W3135908090 cites W2080383849 @default.
- W3135908090 cites W2084901303 @default.
- W3135908090 cites W2090132397 @default.
- W3135908090 cites W2160512933 @default.
- W3135908090 cites W2325473967 @default.
- W3135908090 cites W2473930607 @default.
- W3135908090 cites W2560647685 @default.
- W3135908090 cites W2883318912 @default.
- W3135908090 cites W2952609086 @default.
- W3135908090 cites W2964121744 @default.
- W3135908090 cites W2968596670 @default.
- W3135908090 cites W2999171365 @default.
- W3135908090 cites W3165086872 @default.
- W3135908090 cites W3211877311 @default.
- W3135908090 doi "https://doi.org/10.2118/204093-ms" @default.
- W3135908090 hasPublicationYear "2021" @default.
- W3135908090 type Work @default.
- W3135908090 sameAs 3135908090 @default.
- W3135908090 citedByCount "1" @default.
- W3135908090 countsByYear W31359080902022 @default.
- W3135908090 crossrefType "proceedings-article" @default.
- W3135908090 hasAuthorship W3135908090A5044692320 @default.
- W3135908090 hasAuthorship W3135908090A5059193268 @default.
- W3135908090 hasAuthorship W3135908090A5070683028 @default.
- W3135908090 hasConcept C105795698 @default.
- W3135908090 hasConcept C11171543 @default.
- W3135908090 hasConcept C122792734 @default.
- W3135908090 hasConcept C124101348 @default.
- W3135908090 hasConcept C127313418 @default.
- W3135908090 hasConcept C127413603 @default.
- W3135908090 hasConcept C150560799 @default.
- W3135908090 hasConcept C154945302 @default.
- W3135908090 hasConcept C15744967 @default.
- W3135908090 hasConcept C165838908 @default.
- W3135908090 hasConcept C187320778 @default.
- W3135908090 hasConcept C25197100 @default.
- W3135908090 hasConcept C2776386368 @default.
- W3135908090 hasConcept C2781140086 @default.
- W3135908090 hasConcept C33923547 @default.
- W3135908090 hasConcept C41008148 @default.
- W3135908090 hasConcept C42222113 @default.
- W3135908090 hasConcept C5900021 @default.
- W3135908090 hasConcept C78519656 @default.
- W3135908090 hasConcept C78762247 @default.
- W3135908090 hasConceptScore W3135908090C105795698 @default.
- W3135908090 hasConceptScore W3135908090C11171543 @default.
- W3135908090 hasConceptScore W3135908090C122792734 @default.
- W3135908090 hasConceptScore W3135908090C124101348 @default.
- W3135908090 hasConceptScore W3135908090C127313418 @default.
- W3135908090 hasConceptScore W3135908090C127413603 @default.
- W3135908090 hasConceptScore W3135908090C150560799 @default.
- W3135908090 hasConceptScore W3135908090C154945302 @default.
- W3135908090 hasConceptScore W3135908090C15744967 @default.
- W3135908090 hasConceptScore W3135908090C165838908 @default.
- W3135908090 hasConceptScore W3135908090C187320778 @default.
- W3135908090 hasConceptScore W3135908090C25197100 @default.
- W3135908090 hasConceptScore W3135908090C2776386368 @default.
- W3135908090 hasConceptScore W3135908090C2781140086 @default.
- W3135908090 hasConceptScore W3135908090C33923547 @default.
- W3135908090 hasConceptScore W3135908090C41008148 @default.
- W3135908090 hasConceptScore W3135908090C42222113 @default.
- W3135908090 hasConceptScore W3135908090C5900021 @default.
- W3135908090 hasConceptScore W3135908090C78519656 @default.
- W3135908090 hasConceptScore W3135908090C78762247 @default.
- W3135908090 hasLocation W31359080901 @default.
- W3135908090 hasOpenAccess W3135908090 @default.
- W3135908090 hasPrimaryLocation W31359080901 @default.
- W3135908090 hasRelatedWork W14302896 @default.
- W3135908090 hasRelatedWork W14563886 @default.
- W3135908090 hasRelatedWork W17127260 @default.
- W3135908090 hasRelatedWork W20839932 @default.
- W3135908090 hasRelatedWork W30500030 @default.
- W3135908090 hasRelatedWork W42544864 @default.
- W3135908090 hasRelatedWork W49138110 @default.
- W3135908090 hasRelatedWork W51579668 @default.
- W3135908090 hasRelatedWork W53722866 @default.
- W3135908090 hasRelatedWork W56134935 @default.
- W3135908090 isParatext "false" @default.
- W3135908090 isRetracted "false" @default.
- W3135908090 magId "3135908090" @default.
- W3135908090 workType "article" @default.