Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135969841> ?p ?o ?g. }
- W3135969841 abstract "Brain age is an imaging-based biomarker with excellent feasibility for characterizing individual brain health and may serve as a single quantitative index for clinical and domain-specific usage. Brain age has been successfully estimated using extensive neuroimaging data from healthy participants with various feature extraction and conventional machine learning (ML) approaches. Recently, several end-to-end deep learning (DL) analytical frameworks have been proposed as alternative approaches to predict individual brain age with higher accuracy. However, the optimal approach to select and assemble appropriate input feature sets for DL analytical frameworks remains to be determined. In the Predictive Analytics Competition 2019, we proposed a hierarchical analytical framework which first used ML algorithms to investigate the potential contribution of different input features for predicting individual brain age. The obtained information then served as a priori knowledge for determining the input feature sets of the final ensemble DL prediction model. Systematic evaluation revealed that ML approaches with multiple concurrent input features, including tissue volume and density, achieved higher prediction accuracy when compared with approaches with a single input feature set [Ridge regression: mean absolute error (MAE) = 4.51 years, R 2 = 0.88; support vector regression, MAE = 4.42 years, R 2 = 0.88]. Based on this evaluation, a final ensemble DL brain age prediction model integrating multiple feature sets was constructed with reasonable computation capacity and achieved higher prediction accuracy when compared with ML approaches in the training dataset (MAE = 3.77 years; R 2 = 0.90). Furthermore, the proposed ensemble DL brain age prediction model also demonstrated sufficient generalizability in the testing dataset (MAE = 3.33 years). In summary, this study provides initial evidence of how-to efficiency for integrating ML and advanced DL approaches into a unified analytical framework for predicting individual brain age with higher accuracy. With the increase in large open multiple-modality neuroimaging datasets, ensemble DL strategies with appropriate input feature sets serve as a candidate approach for predicting individual brain age in the future." @default.
- W3135969841 created "2021-03-29" @default.
- W3135969841 creator A5016801688 @default.
- W3135969841 creator A5038117486 @default.
- W3135969841 creator A5041295898 @default.
- W3135969841 creator A5045453309 @default.
- W3135969841 creator A5048548216 @default.
- W3135969841 creator A5054252808 @default.
- W3135969841 creator A5077539496 @default.
- W3135969841 creator A5081341243 @default.
- W3135969841 creator A5085428151 @default.
- W3135969841 creator A5086359211 @default.
- W3135969841 date "2021-03-23" @default.
- W3135969841 modified "2023-10-18" @default.
- W3135969841 title "Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework" @default.
- W3135969841 cites W1524356610 @default.
- W3135969841 cites W1964357740 @default.
- W3135969841 cites W1969129137 @default.
- W3135969841 cites W1980801609 @default.
- W3135969841 cites W1994239403 @default.
- W3135969841 cites W1997145589 @default.
- W3135969841 cites W1998185086 @default.
- W3135969841 cites W2008607322 @default.
- W3135969841 cites W2011484875 @default.
- W3135969841 cites W2013859768 @default.
- W3135969841 cites W2044523798 @default.
- W3135969841 cites W2063435176 @default.
- W3135969841 cites W2085037176 @default.
- W3135969841 cites W2107956883 @default.
- W3135969841 cites W2108103428 @default.
- W3135969841 cites W2108150542 @default.
- W3135969841 cites W2113127248 @default.
- W3135969841 cites W2119980272 @default.
- W3135969841 cites W2123687120 @default.
- W3135969841 cites W2134820284 @default.
- W3135969841 cites W2137229374 @default.
- W3135969841 cites W2151591509 @default.
- W3135969841 cites W2153367517 @default.
- W3135969841 cites W2161336914 @default.
- W3135969841 cites W2166793287 @default.
- W3135969841 cites W2167579130 @default.
- W3135969841 cites W2194005842 @default.
- W3135969841 cites W2255371896 @default.
- W3135969841 cites W2278180070 @default.
- W3135969841 cites W2283409404 @default.
- W3135969841 cites W2421101021 @default.
- W3135969841 cites W2547929024 @default.
- W3135969841 cites W2552208519 @default.
- W3135969841 cites W2569531558 @default.
- W3135969841 cites W2579617530 @default.
- W3135969841 cites W2602552939 @default.
- W3135969841 cites W2605712228 @default.
- W3135969841 cites W2789679326 @default.
- W3135969841 cites W2791848629 @default.
- W3135969841 cites W2800705832 @default.
- W3135969841 cites W2811095131 @default.
- W3135969841 cites W2884065486 @default.
- W3135969841 cites W2919115771 @default.
- W3135969841 cites W2939214377 @default.
- W3135969841 cites W2951617899 @default.
- W3135969841 cites W2989916101 @default.
- W3135969841 cites W2995959638 @default.
- W3135969841 cites W2999319035 @default.
- W3135969841 cites W3010138595 @default.
- W3135969841 cites W3012829135 @default.
- W3135969841 cites W3016088911 @default.
- W3135969841 cites W3027718029 @default.
- W3135969841 cites W3037737151 @default.
- W3135969841 cites W3045950046 @default.
- W3135969841 cites W3092783643 @default.
- W3135969841 cites W3111518260 @default.
- W3135969841 cites W4234698323 @default.
- W3135969841 doi "https://doi.org/10.3389/fpsyt.2021.626677" @default.
- W3135969841 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8021919" @default.
- W3135969841 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33833699" @default.
- W3135969841 hasPublicationYear "2021" @default.
- W3135969841 type Work @default.
- W3135969841 sameAs 3135969841 @default.
- W3135969841 citedByCount "12" @default.
- W3135969841 countsByYear W31359698412021 @default.
- W3135969841 countsByYear W31359698412022 @default.
- W3135969841 countsByYear W31359698412023 @default.
- W3135969841 crossrefType "journal-article" @default.
- W3135969841 hasAuthorship W3135969841A5016801688 @default.
- W3135969841 hasAuthorship W3135969841A5038117486 @default.
- W3135969841 hasAuthorship W3135969841A5041295898 @default.
- W3135969841 hasAuthorship W3135969841A5045453309 @default.
- W3135969841 hasAuthorship W3135969841A5048548216 @default.
- W3135969841 hasAuthorship W3135969841A5054252808 @default.
- W3135969841 hasAuthorship W3135969841A5077539496 @default.
- W3135969841 hasAuthorship W3135969841A5081341243 @default.
- W3135969841 hasAuthorship W3135969841A5085428151 @default.
- W3135969841 hasAuthorship W3135969841A5086359211 @default.
- W3135969841 hasBestOaLocation W31359698411 @default.
- W3135969841 hasConcept C105795698 @default.
- W3135969841 hasConcept C118552586 @default.
- W3135969841 hasConcept C119857082 @default.
- W3135969841 hasConcept C12267149 @default.
- W3135969841 hasConcept C124101348 @default.
- W3135969841 hasConcept C138885662 @default.