Matches in SemOpenAlex for { <https://semopenalex.org/work/W3135984658> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3135984658 abstract "This thesis is devoted to the analysis of the notion of relative entropy in the frame of models based on (geometric) Levy processes. It is well-known that financial markets where the stock prices follow a (geometric) Levy process are incomplete except for the cases that the Levy process is a Brownian motion or a Poisson process. In arbitrage-free and complete financial markets, there exists a unique martingale measure. We are interested in such probability measures Q that the price process S = S_0 exp(X) is Q-martingale and Q is equivalent (or, at least, absolutely continuous) to the original measure P. In financial mathematics the notion of a martingale measure is very important because of the no-arbitrage property and hedging. The famous BlackScholes model, which was already studied for decades is an example of the case where exists a unique absolutely continuous martingale measure, but it is not the case for the general (geometric) Levy process. The set of the absolutely continuous martingale measures M may have one of three different forms: (1) the set M could be empty; (2) the set M consists of just one measure (case without jumps, the classic BlackScholes model); (3) the set M consists of an infinite number of martingale measures. We focus our attention on the case (3). It is used the notion of relative entropy I(P,Q) as an analogue of the distance between measures P and Q. The measure Q* from the class of absolutely continuous martingale measures M which minimizes the relative entropy, is called the minimal entropy martingale measure (MEMM). There is also introduced the notion of Esscher transformation and the Esscher martingale measure (EMM), which are already well-known from actuarial mathematics. One of the main results of the thesis states the identity of the notions MEMM and EMM for our basic model. The thesis is divided in four chapters which are followed by two appendices. In Chapter 1 we collect main results of measure theory and stochastic analysis. In Chapter 2 we give an introduction to the problem of the MEMM. In Chapter 3 we investigate the model of the price processes based on the exponential (geometric) compound Poisson process and show its connection with the one-step model. In Chapter 4 the main objects of the investigations are models driven by the linear and exponential (geometric) Levy processes. There are stated the main results of the thesis, including a sufficient condition of the existence of the EMM, coincidence of the EMM and the MEMM for the models driven by the linear and exponential Levy processes and a series of important explicit equalities for the value of the relative entropy of the MEMM with respect to the original probability measure P. In Appendix A are collected the most important properties of the technical functions which are widely used in the main body of the thesis. In Appendix B we apply the general theory developed in Chapter 2, to a particular model, the one-step model." @default.
- W3135984658 created "2021-03-29" @default.
- W3135984658 creator A5032596795 @default.
- W3135984658 date "2017-01-01" @default.
- W3135984658 modified "2023-09-27" @default.
- W3135984658 title "Stochastic models for finance and insurance: relative entropy" @default.
- W3135984658 hasPublicationYear "2017" @default.
- W3135984658 type Work @default.
- W3135984658 sameAs 3135984658 @default.
- W3135984658 citedByCount "1" @default.
- W3135984658 countsByYear W31359846582019 @default.
- W3135984658 crossrefType "dissertation" @default.
- W3135984658 hasAuthorship W3135984658A5032596795 @default.
- W3135984658 hasConcept C10138342 @default.
- W3135984658 hasConcept C101615488 @default.
- W3135984658 hasConcept C105795698 @default.
- W3135984658 hasConcept C118615104 @default.
- W3135984658 hasConcept C118733216 @default.
- W3135984658 hasConcept C136264566 @default.
- W3135984658 hasConcept C144237770 @default.
- W3135984658 hasConcept C160623529 @default.
- W3135984658 hasConcept C162324750 @default.
- W3135984658 hasConcept C162344956 @default.
- W3135984658 hasConcept C171752962 @default.
- W3135984658 hasConcept C185637853 @default.
- W3135984658 hasConcept C202444582 @default.
- W3135984658 hasConcept C21031990 @default.
- W3135984658 hasConcept C2780378061 @default.
- W3135984658 hasConcept C28826006 @default.
- W3135984658 hasConcept C33923547 @default.
- W3135984658 hasConcept C48406656 @default.
- W3135984658 hasConcept C58435881 @default.
- W3135984658 hasConcept C68710425 @default.
- W3135984658 hasConcept C76374431 @default.
- W3135984658 hasConcept C88757350 @default.
- W3135984658 hasConcept C93373587 @default.
- W3135984658 hasConceptScore W3135984658C10138342 @default.
- W3135984658 hasConceptScore W3135984658C101615488 @default.
- W3135984658 hasConceptScore W3135984658C105795698 @default.
- W3135984658 hasConceptScore W3135984658C118615104 @default.
- W3135984658 hasConceptScore W3135984658C118733216 @default.
- W3135984658 hasConceptScore W3135984658C136264566 @default.
- W3135984658 hasConceptScore W3135984658C144237770 @default.
- W3135984658 hasConceptScore W3135984658C160623529 @default.
- W3135984658 hasConceptScore W3135984658C162324750 @default.
- W3135984658 hasConceptScore W3135984658C162344956 @default.
- W3135984658 hasConceptScore W3135984658C171752962 @default.
- W3135984658 hasConceptScore W3135984658C185637853 @default.
- W3135984658 hasConceptScore W3135984658C202444582 @default.
- W3135984658 hasConceptScore W3135984658C21031990 @default.
- W3135984658 hasConceptScore W3135984658C2780378061 @default.
- W3135984658 hasConceptScore W3135984658C28826006 @default.
- W3135984658 hasConceptScore W3135984658C33923547 @default.
- W3135984658 hasConceptScore W3135984658C48406656 @default.
- W3135984658 hasConceptScore W3135984658C58435881 @default.
- W3135984658 hasConceptScore W3135984658C68710425 @default.
- W3135984658 hasConceptScore W3135984658C76374431 @default.
- W3135984658 hasConceptScore W3135984658C88757350 @default.
- W3135984658 hasConceptScore W3135984658C93373587 @default.
- W3135984658 hasLocation W31359846581 @default.
- W3135984658 hasOpenAccess W3135984658 @default.
- W3135984658 hasPrimaryLocation W31359846581 @default.
- W3135984658 hasRelatedWork W1497443293 @default.
- W3135984658 hasRelatedWork W1535562492 @default.
- W3135984658 hasRelatedWork W1544814247 @default.
- W3135984658 hasRelatedWork W1558539173 @default.
- W3135984658 hasRelatedWork W1971132156 @default.
- W3135984658 hasRelatedWork W1978436410 @default.
- W3135984658 hasRelatedWork W1986392102 @default.
- W3135984658 hasRelatedWork W2058903005 @default.
- W3135984658 hasRelatedWork W2095487918 @default.
- W3135984658 hasRelatedWork W2166468779 @default.
- W3135984658 hasRelatedWork W2249772899 @default.
- W3135984658 hasRelatedWork W2346309947 @default.
- W3135984658 hasRelatedWork W2560184436 @default.
- W3135984658 hasRelatedWork W289131035 @default.
- W3135984658 hasRelatedWork W292149183 @default.
- W3135984658 hasRelatedWork W3110265686 @default.
- W3135984658 hasRelatedWork W3121875955 @default.
- W3135984658 hasRelatedWork W3125809291 @default.
- W3135984658 hasRelatedWork W88791093 @default.
- W3135984658 hasRelatedWork W936708530 @default.
- W3135984658 isParatext "false" @default.
- W3135984658 isRetracted "false" @default.
- W3135984658 magId "3135984658" @default.
- W3135984658 workType "dissertation" @default.