Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136011173> ?p ?o ?g. }
- W3136011173 endingPage "3040" @default.
- W3136011173 startingPage "3029" @default.
- W3136011173 abstract "Retinal layers segmentation in optical coherence tomography (OCT) images is a critical step in the diagnosis of numerous ocular diseases. Automatic layers segmentation requires separating each individual layer instance with accurate boundary detection, but remains a challenging task since it suffers from speckle noise, intensity inhomogeneity, and the low contrast around boundary. In this work, we proposed a boundary aware U-Net (BAU-Net) for retinal layers segmentation by detecting accurate boundary. Based on encoder-decoder architecture, we design a dual tasks framework with low-level outputs for boundary detection and high-level outputs for layers segmentation. Specifically, we first use the multi-scale input strategy to enrich the spatial information in the deep features of encoder. For low-level features from encoder, we design an edge aware (EA) module in skip connection to extract the pure edge features. Then, a U-structure feature enhanced (UFE) module is designed in all skip connections to enlarge the features receptive fields from the encoder. Besides, a canny edge fusion (CEF) module is introduced to aforementioned architecture, which can fuse the priory edge information from segmentation task to boundary detection branch for a better predication. Furthermore, we model each boundary as a vertical coordinates distribution for boundary detection. Based on this distribution, a topology guarantee loss with combined A-scan regression loss and structure loss is proposed to make an accurate and guaranteed topological boundary set. The method is evaluated on two public datasets and the results demonstrate that the BAU-Net achieves promising performance than other state-of-the-art methods." @default.
- W3136011173 created "2021-03-29" @default.
- W3136011173 creator A5003799076 @default.
- W3136011173 creator A5023167933 @default.
- W3136011173 creator A5031159788 @default.
- W3136011173 creator A5069531609 @default.
- W3136011173 creator A5081041205 @default.
- W3136011173 creator A5084940574 @default.
- W3136011173 date "2021-08-01" @default.
- W3136011173 modified "2023-10-17" @default.
- W3136011173 title "Boundary Aware U-Net for Retinal Layers Segmentation in Optical Coherence Tomography Images" @default.
- W3136011173 cites W1000804384 @default.
- W3136011173 cites W1873693865 @default.
- W3136011173 cites W1903029394 @default.
- W3136011173 cites W2000642633 @default.
- W3136011173 cites W2006175679 @default.
- W3136011173 cites W2011237852 @default.
- W3136011173 cites W2024492357 @default.
- W3136011173 cites W2026516529 @default.
- W3136011173 cites W2030917850 @default.
- W3136011173 cites W2032227103 @default.
- W3136011173 cites W2038850290 @default.
- W3136011173 cites W2043667267 @default.
- W3136011173 cites W2056575109 @default.
- W3136011173 cites W2063440562 @default.
- W3136011173 cites W2074598933 @default.
- W3136011173 cites W2100546771 @default.
- W3136011173 cites W2105274562 @default.
- W3136011173 cites W2135198734 @default.
- W3136011173 cites W2152896605 @default.
- W3136011173 cites W2177248803 @default.
- W3136011173 cites W2194775991 @default.
- W3136011173 cites W2463489988 @default.
- W3136011173 cites W2521652955 @default.
- W3136011173 cites W2606534623 @default.
- W3136011173 cites W2608854843 @default.
- W3136011173 cites W2769497098 @default.
- W3136011173 cites W2790408330 @default.
- W3136011173 cites W2794276553 @default.
- W3136011173 cites W2898575988 @default.
- W3136011173 cites W2907465751 @default.
- W3136011173 cites W2963706010 @default.
- W3136011173 cites W2964944781 @default.
- W3136011173 cites W2966495887 @default.
- W3136011173 cites W2973030301 @default.
- W3136011173 cites W2979568061 @default.
- W3136011173 cites W3081898614 @default.
- W3136011173 cites W3088956154 @default.
- W3136011173 cites W3113225488 @default.
- W3136011173 doi "https://doi.org/10.1109/jbhi.2021.3066208" @default.
- W3136011173 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33729959" @default.
- W3136011173 hasPublicationYear "2021" @default.
- W3136011173 type Work @default.
- W3136011173 sameAs 3136011173 @default.
- W3136011173 citedByCount "19" @default.
- W3136011173 countsByYear W31360111732021 @default.
- W3136011173 countsByYear W31360111732022 @default.
- W3136011173 countsByYear W31360111732023 @default.
- W3136011173 crossrefType "journal-article" @default.
- W3136011173 hasAuthorship W3136011173A5003799076 @default.
- W3136011173 hasAuthorship W3136011173A5023167933 @default.
- W3136011173 hasAuthorship W3136011173A5031159788 @default.
- W3136011173 hasAuthorship W3136011173A5069531609 @default.
- W3136011173 hasAuthorship W3136011173A5081041205 @default.
- W3136011173 hasAuthorship W3136011173A5084940574 @default.
- W3136011173 hasConcept C111919701 @default.
- W3136011173 hasConcept C114614502 @default.
- W3136011173 hasConcept C115961682 @default.
- W3136011173 hasConcept C118505674 @default.
- W3136011173 hasConcept C120665830 @default.
- W3136011173 hasConcept C121332964 @default.
- W3136011173 hasConcept C124504099 @default.
- W3136011173 hasConcept C134306372 @default.
- W3136011173 hasConcept C138885662 @default.
- W3136011173 hasConcept C153180895 @default.
- W3136011173 hasConcept C154945302 @default.
- W3136011173 hasConcept C184720557 @default.
- W3136011173 hasConcept C193536780 @default.
- W3136011173 hasConcept C2776401178 @default.
- W3136011173 hasConcept C2778818243 @default.
- W3136011173 hasConcept C31972630 @default.
- W3136011173 hasConcept C33923547 @default.
- W3136011173 hasConcept C41008148 @default.
- W3136011173 hasConcept C41895202 @default.
- W3136011173 hasConcept C62354387 @default.
- W3136011173 hasConcept C89600930 @default.
- W3136011173 hasConcept C9417928 @default.
- W3136011173 hasConceptScore W3136011173C111919701 @default.
- W3136011173 hasConceptScore W3136011173C114614502 @default.
- W3136011173 hasConceptScore W3136011173C115961682 @default.
- W3136011173 hasConceptScore W3136011173C118505674 @default.
- W3136011173 hasConceptScore W3136011173C120665830 @default.
- W3136011173 hasConceptScore W3136011173C121332964 @default.
- W3136011173 hasConceptScore W3136011173C124504099 @default.
- W3136011173 hasConceptScore W3136011173C134306372 @default.
- W3136011173 hasConceptScore W3136011173C138885662 @default.
- W3136011173 hasConceptScore W3136011173C153180895 @default.
- W3136011173 hasConceptScore W3136011173C154945302 @default.