Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136016134> ?p ?o ?g. }
- W3136016134 endingPage "412" @default.
- W3136016134 startingPage "404" @default.
- W3136016134 abstract "In the human–robot interaction, especially when hand contact appears directly on the robot arm, the dynamics of the human arm presents an essential component in human–robot interaction and object manipulation. Modeling and estimation of the human arm dynamics show great potential for achieving more natural and safer interaction. To enrich the dexterity and guarantee the accuracy of the manipulation, mapping the motor functionality of muscle using biosignals becomes a popular topic. In this article, a novel algorithm was constructed using deep learning to explore the potential model between surface electromyography (sEMG) signals of the human arm and interaction force for human–robot interaction. Its features were extracted by adopting the convolutional neural network from the sEMG signals automatically without using prior knowledge of the biomechanical model. The experiments prove the lower error ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex-math notation=LaTeX>$< text{0.4},N$</tex-math></inline-formula> ) of the designed regression by comparing it with other approaches, such as artificial neural network and long short-term memory. It should be also mentioned that the antinoise ability is an important index to apply this technique in practical applications. Hence, we also add different Gaussian noises into the dataset to demonstrate the robustness against measurement noises by using the proposed model. Finally, it demonstrates the performance of the proposed algorithm using the Myo controller and KUKA LWR4+ robot." @default.
- W3136016134 created "2021-03-29" @default.
- W3136016134 creator A5004258040 @default.
- W3136016134 creator A5015663174 @default.
- W3136016134 creator A5035835836 @default.
- W3136016134 creator A5045080493 @default.
- W3136016134 creator A5082668462 @default.
- W3136016134 creator A5083795699 @default.
- W3136016134 date "2021-10-01" @default.
- W3136016134 modified "2023-10-12" @default.
- W3136016134 title "Deep Neural Network Approach in EMG-Based Force Estimation for Human–Robot Interaction" @default.
- W3136016134 cites W1483015037 @default.
- W3136016134 cites W1983386331 @default.
- W3136016134 cites W2004103811 @default.
- W3136016134 cites W2034345899 @default.
- W3136016134 cites W2057967659 @default.
- W3136016134 cites W2077151172 @default.
- W3136016134 cites W2086087122 @default.
- W3136016134 cites W2166588786 @default.
- W3136016134 cites W2229484904 @default.
- W3136016134 cites W2288563262 @default.
- W3136016134 cites W2537245467 @default.
- W3136016134 cites W2612087786 @default.
- W3136016134 cites W2724987239 @default.
- W3136016134 cites W2766147584 @default.
- W3136016134 cites W2767704770 @default.
- W3136016134 cites W2770184295 @default.
- W3136016134 cites W2795105096 @default.
- W3136016134 cites W2892959507 @default.
- W3136016134 cites W2896381947 @default.
- W3136016134 cites W2904510872 @default.
- W3136016134 cites W2908347114 @default.
- W3136016134 cites W2909320737 @default.
- W3136016134 cites W2914029293 @default.
- W3136016134 cites W2922311477 @default.
- W3136016134 cites W2946154472 @default.
- W3136016134 cites W2964481574 @default.
- W3136016134 cites W2973392783 @default.
- W3136016134 cites W2975170551 @default.
- W3136016134 cites W2982586672 @default.
- W3136016134 cites W2987013658 @default.
- W3136016134 cites W2998114800 @default.
- W3136016134 cites W2998976061 @default.
- W3136016134 cites W3008806548 @default.
- W3136016134 cites W3016601897 @default.
- W3136016134 cites W3017424189 @default.
- W3136016134 cites W3048422314 @default.
- W3136016134 cites W3109827567 @default.
- W3136016134 cites W3118688377 @default.
- W3136016134 doi "https://doi.org/10.1109/tai.2021.3066565" @default.
- W3136016134 hasPublicationYear "2021" @default.
- W3136016134 type Work @default.
- W3136016134 sameAs 3136016134 @default.
- W3136016134 citedByCount "28" @default.
- W3136016134 countsByYear W31360161342021 @default.
- W3136016134 countsByYear W31360161342022 @default.
- W3136016134 countsByYear W31360161342023 @default.
- W3136016134 crossrefType "journal-article" @default.
- W3136016134 hasAuthorship W3136016134A5004258040 @default.
- W3136016134 hasAuthorship W3136016134A5015663174 @default.
- W3136016134 hasAuthorship W3136016134A5035835836 @default.
- W3136016134 hasAuthorship W3136016134A5045080493 @default.
- W3136016134 hasAuthorship W3136016134A5082668462 @default.
- W3136016134 hasAuthorship W3136016134A5083795699 @default.
- W3136016134 hasBestOaLocation W31360161342 @default.
- W3136016134 hasConcept C104317684 @default.
- W3136016134 hasConcept C108583219 @default.
- W3136016134 hasConcept C119857082 @default.
- W3136016134 hasConcept C145460709 @default.
- W3136016134 hasConcept C150415221 @default.
- W3136016134 hasConcept C153180895 @default.
- W3136016134 hasConcept C154945302 @default.
- W3136016134 hasConcept C185592680 @default.
- W3136016134 hasConcept C31972630 @default.
- W3136016134 hasConcept C41008148 @default.
- W3136016134 hasConcept C50644808 @default.
- W3136016134 hasConcept C55493867 @default.
- W3136016134 hasConcept C63479239 @default.
- W3136016134 hasConcept C81363708 @default.
- W3136016134 hasConcept C90509273 @default.
- W3136016134 hasConceptScore W3136016134C104317684 @default.
- W3136016134 hasConceptScore W3136016134C108583219 @default.
- W3136016134 hasConceptScore W3136016134C119857082 @default.
- W3136016134 hasConceptScore W3136016134C145460709 @default.
- W3136016134 hasConceptScore W3136016134C150415221 @default.
- W3136016134 hasConceptScore W3136016134C153180895 @default.
- W3136016134 hasConceptScore W3136016134C154945302 @default.
- W3136016134 hasConceptScore W3136016134C185592680 @default.
- W3136016134 hasConceptScore W3136016134C31972630 @default.
- W3136016134 hasConceptScore W3136016134C41008148 @default.
- W3136016134 hasConceptScore W3136016134C50644808 @default.
- W3136016134 hasConceptScore W3136016134C55493867 @default.
- W3136016134 hasConceptScore W3136016134C63479239 @default.
- W3136016134 hasConceptScore W3136016134C81363708 @default.
- W3136016134 hasConceptScore W3136016134C90509273 @default.
- W3136016134 hasFunder F4320321001 @default.
- W3136016134 hasIssue "5" @default.
- W3136016134 hasLocation W31360161341 @default.