Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136072466> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3136072466 abstract "Machine learning algorithms and big data are transforming all industries including the finance and portfolio management sectors. While these techniques, such as Deep Belief Networks or Random Forests, are becoming more and more popular on the market, the academic literature is relatively sparse. Through a series of applications involving hundreds of variables/predictors and stocks, this article presents some of the state-of-the-art techniques and how they can be implemented to manage a long-short portfolio. Numerous practical and empirical issues are developed. One of the main questions beyond big data use is the value of information. Does an increase in the number of predictors improve the portfolio performance? Which features are the most important? A large number of predictors means, potentially, a high level of noise. How do the algorithms manage this? This article develops an application using a 22-year trading period, up to 300 U.S. large caps and around 600 predictors. The empirical results underline the ability of these techniques to generate useful trading signals for portfolios with important turnovers and short holding periods (one or five days). Positive excess returns are reported between 1993 and 2008. They are strongly reduced after accounting for transaction costs and traditional risk factors. When these machine learning tools were readily available in the market, excess returns turned into the negative in most recent times. Results also show that adding features is far from being a guarantee to boost the alpha of the portfolio." @default.
- W3136072466 created "2021-03-29" @default.
- W3136072466 creator A5053262702 @default.
- W3136072466 date "2019-01-01" @default.
- W3136072466 modified "2023-09-27" @default.
- W3136072466 title "Large data sets and machine learning: Applications to statistical arbitrage" @default.
- W3136072466 hasPublicationYear "2019" @default.
- W3136072466 type Work @default.
- W3136072466 sameAs 3136072466 @default.
- W3136072466 citedByCount "0" @default.
- W3136072466 crossrefType "posted-content" @default.
- W3136072466 hasAuthorship W3136072466A5053262702 @default.
- W3136072466 hasConcept C10138342 @default.
- W3136072466 hasConcept C106159729 @default.
- W3136072466 hasConcept C119857082 @default.
- W3136072466 hasConcept C124101348 @default.
- W3136072466 hasConcept C131562839 @default.
- W3136072466 hasConcept C149782125 @default.
- W3136072466 hasConcept C154945302 @default.
- W3136072466 hasConcept C15952604 @default.
- W3136072466 hasConcept C160623529 @default.
- W3136072466 hasConcept C162324750 @default.
- W3136072466 hasConcept C187736073 @default.
- W3136072466 hasConcept C202655437 @default.
- W3136072466 hasConcept C2780821815 @default.
- W3136072466 hasConcept C41008148 @default.
- W3136072466 hasConcept C74510933 @default.
- W3136072466 hasConcept C75684735 @default.
- W3136072466 hasConcept C98965940 @default.
- W3136072466 hasConceptScore W3136072466C10138342 @default.
- W3136072466 hasConceptScore W3136072466C106159729 @default.
- W3136072466 hasConceptScore W3136072466C119857082 @default.
- W3136072466 hasConceptScore W3136072466C124101348 @default.
- W3136072466 hasConceptScore W3136072466C131562839 @default.
- W3136072466 hasConceptScore W3136072466C149782125 @default.
- W3136072466 hasConceptScore W3136072466C154945302 @default.
- W3136072466 hasConceptScore W3136072466C15952604 @default.
- W3136072466 hasConceptScore W3136072466C160623529 @default.
- W3136072466 hasConceptScore W3136072466C162324750 @default.
- W3136072466 hasConceptScore W3136072466C187736073 @default.
- W3136072466 hasConceptScore W3136072466C202655437 @default.
- W3136072466 hasConceptScore W3136072466C2780821815 @default.
- W3136072466 hasConceptScore W3136072466C41008148 @default.
- W3136072466 hasConceptScore W3136072466C74510933 @default.
- W3136072466 hasConceptScore W3136072466C75684735 @default.
- W3136072466 hasConceptScore W3136072466C98965940 @default.
- W3136072466 hasLocation W31360724661 @default.
- W3136072466 hasOpenAccess W3136072466 @default.
- W3136072466 hasPrimaryLocation W31360724661 @default.
- W3136072466 hasRelatedWork W1534470370 @default.
- W3136072466 hasRelatedWork W1557423732 @default.
- W3136072466 hasRelatedWork W2062138926 @default.
- W3136072466 hasRelatedWork W2528775566 @default.
- W3136072466 hasRelatedWork W2566183341 @default.
- W3136072466 hasRelatedWork W2765242450 @default.
- W3136072466 hasRelatedWork W2937013183 @default.
- W3136072466 hasRelatedWork W2942091588 @default.
- W3136072466 hasRelatedWork W2969471676 @default.
- W3136072466 hasRelatedWork W2976409720 @default.
- W3136072466 hasRelatedWork W2981754157 @default.
- W3136072466 hasRelatedWork W3112345750 @default.
- W3136072466 hasRelatedWork W3132342581 @default.
- W3136072466 hasRelatedWork W3159743023 @default.
- W3136072466 hasRelatedWork W3163382048 @default.
- W3136072466 hasRelatedWork W3196933557 @default.
- W3136072466 hasRelatedWork W372197119 @default.
- W3136072466 hasRelatedWork W98320494 @default.
- W3136072466 hasRelatedWork W2559332474 @default.
- W3136072466 hasRelatedWork W2774572864 @default.
- W3136072466 isParatext "false" @default.
- W3136072466 isRetracted "false" @default.
- W3136072466 magId "3136072466" @default.
- W3136072466 workType "article" @default.