Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136102381> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3136102381 abstract "Discovering and visualizing data clusters is an important AI/ML and visual knowledge discovery task. This paper proposes a new data clustering approach inspired by the concept of causal models used in cognitive science. This approach is based on the causal relations between features, instead of similarity of features in traditional clustering approaches. The concept of the center of the cluster is formalized in accordance with prototype theory of concepts explored in the cognitive science in terms of a correlational structure of perceived attributes. Traditionally in AI and cognitive science, causal models are described using Bayesian networks. However, Bayesian networks do not support cycles. This paper proposes a novel mathematical apparatus probabilistic generalization of formal concepts - for describing causal models via cyclical causal relations (fixpoints of causal relations) that form a clusters and generate a clusters prototypes. This approach is illustrated with a case study." @default.
- W3136102381 created "2021-03-29" @default.
- W3136102381 creator A5037118155 @default.
- W3136102381 creator A5052118754 @default.
- W3136102381 date "2020-09-01" @default.
- W3136102381 modified "2023-09-24" @default.
- W3136102381 title "Explainable Rule-Based Clustering based on Cyclic Probabilistic Causal Models" @default.
- W3136102381 cites W1503729935 @default.
- W3136102381 cites W1591870353 @default.
- W3136102381 cites W177003746 @default.
- W3136102381 cites W1963745475 @default.
- W3136102381 cites W1965831205 @default.
- W3136102381 cites W1985469252 @default.
- W3136102381 cites W2026973491 @default.
- W3136102381 cites W2055983990 @default.
- W3136102381 cites W2059634082 @default.
- W3136102381 cites W2084829134 @default.
- W3136102381 cites W2149196449 @default.
- W3136102381 cites W219753674 @default.
- W3136102381 cites W2331882697 @default.
- W3136102381 cites W2577784319 @default.
- W3136102381 cites W2593263352 @default.
- W3136102381 cites W3035258717 @default.
- W3136102381 doi "https://doi.org/10.1109/iv51561.2020.00139" @default.
- W3136102381 hasPublicationYear "2020" @default.
- W3136102381 type Work @default.
- W3136102381 sameAs 3136102381 @default.
- W3136102381 citedByCount "1" @default.
- W3136102381 countsByYear W31361023812022 @default.
- W3136102381 crossrefType "proceedings-article" @default.
- W3136102381 hasAuthorship W3136102381A5037118155 @default.
- W3136102381 hasAuthorship W3136102381A5052118754 @default.
- W3136102381 hasConcept C103278499 @default.
- W3136102381 hasConcept C105795698 @default.
- W3136102381 hasConcept C107673813 @default.
- W3136102381 hasConcept C115086926 @default.
- W3136102381 hasConcept C115961682 @default.
- W3136102381 hasConcept C11671645 @default.
- W3136102381 hasConcept C119857082 @default.
- W3136102381 hasConcept C121332964 @default.
- W3136102381 hasConcept C124101348 @default.
- W3136102381 hasConcept C134306372 @default.
- W3136102381 hasConcept C154945302 @default.
- W3136102381 hasConcept C15744967 @default.
- W3136102381 hasConcept C163504300 @default.
- W3136102381 hasConcept C169760540 @default.
- W3136102381 hasConcept C169900460 @default.
- W3136102381 hasConcept C177148314 @default.
- W3136102381 hasConcept C33724603 @default.
- W3136102381 hasConcept C33923547 @default.
- W3136102381 hasConcept C41008148 @default.
- W3136102381 hasConcept C49937458 @default.
- W3136102381 hasConcept C62520636 @default.
- W3136102381 hasConcept C73555534 @default.
- W3136102381 hasConceptScore W3136102381C103278499 @default.
- W3136102381 hasConceptScore W3136102381C105795698 @default.
- W3136102381 hasConceptScore W3136102381C107673813 @default.
- W3136102381 hasConceptScore W3136102381C115086926 @default.
- W3136102381 hasConceptScore W3136102381C115961682 @default.
- W3136102381 hasConceptScore W3136102381C11671645 @default.
- W3136102381 hasConceptScore W3136102381C119857082 @default.
- W3136102381 hasConceptScore W3136102381C121332964 @default.
- W3136102381 hasConceptScore W3136102381C124101348 @default.
- W3136102381 hasConceptScore W3136102381C134306372 @default.
- W3136102381 hasConceptScore W3136102381C154945302 @default.
- W3136102381 hasConceptScore W3136102381C15744967 @default.
- W3136102381 hasConceptScore W3136102381C163504300 @default.
- W3136102381 hasConceptScore W3136102381C169760540 @default.
- W3136102381 hasConceptScore W3136102381C169900460 @default.
- W3136102381 hasConceptScore W3136102381C177148314 @default.
- W3136102381 hasConceptScore W3136102381C33724603 @default.
- W3136102381 hasConceptScore W3136102381C33923547 @default.
- W3136102381 hasConceptScore W3136102381C41008148 @default.
- W3136102381 hasConceptScore W3136102381C49937458 @default.
- W3136102381 hasConceptScore W3136102381C62520636 @default.
- W3136102381 hasConceptScore W3136102381C73555534 @default.
- W3136102381 hasFunder F4320321079 @default.
- W3136102381 hasFunder F4320327494 @default.
- W3136102381 hasLocation W31361023811 @default.
- W3136102381 hasOpenAccess W3136102381 @default.
- W3136102381 hasPrimaryLocation W31361023811 @default.
- W3136102381 hasRelatedWork W1296760 @default.
- W3136102381 hasRelatedWork W1302035 @default.
- W3136102381 hasRelatedWork W368576 @default.
- W3136102381 hasRelatedWork W4177294 @default.
- W3136102381 hasRelatedWork W4179021 @default.
- W3136102381 hasRelatedWork W4529005 @default.
- W3136102381 hasRelatedWork W6017583 @default.
- W3136102381 hasRelatedWork W8643228 @default.
- W3136102381 hasRelatedWork W8978941 @default.
- W3136102381 hasRelatedWork W6412136 @default.
- W3136102381 isParatext "false" @default.
- W3136102381 isRetracted "false" @default.
- W3136102381 magId "3136102381" @default.
- W3136102381 workType "article" @default.