Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136106209> ?p ?o ?g. }
- W3136106209 endingPage "1765" @default.
- W3136106209 startingPage "1751" @default.
- W3136106209 abstract "Dissolved oxygen (DO) is an important indicator of aquaculture, and its accurate forecasting can effectively improve the quality of aquatic products. In this paper, a new DO hybrid forecasting model is proposed that includes three stages: multi-factor analysis, adaptive decomposition, and an optimization-based ensemble. First, considering the complex factors affecting DO, the grey relational (GR) degree method is used to screen out the environmental factors most closely related to DO. The consideration of multiple factors makes model fusion more effective. Second, the series of DO, water temperature, salinity, and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform (EWT) method. Then, five benchmark models are utilized to forecast the sub-series of EWT decomposition. The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm (PSOGSA). Finally, a multi-factor ensemble model for DO is obtained by weighted allocation. The performance of the proposed model is verified by time-series data collected by the pacific islands ocean observing system (PacIOOS) from the WQB04 station at Hilo. The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE), mean absolute percent error (MAPE), standard deviation of error (SDE), and coefficient of determination (R2). Example analysis demonstrates that: ① The proposed model can obtain excellent DO forecasting results; ② the proposed model is superior to other comparison models; and ③ the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions." @default.
- W3136106209 created "2021-03-29" @default.
- W3136106209 creator A5002997318 @default.
- W3136106209 creator A5044301848 @default.
- W3136106209 creator A5064183268 @default.
- W3136106209 creator A5090622915 @default.
- W3136106209 date "2021-12-01" @default.
- W3136106209 modified "2023-10-05" @default.
- W3136106209 title "A Hybrid Neural Network Model for Marine Dissolved Oxygen Concentrations Time-Series Forecasting Based on Multi-Factor Analysis and a Multi-Model Ensemble" @default.
- W3136106209 cites W1970284904 @default.
- W3136106209 cites W1977929135 @default.
- W3136106209 cites W1983800524 @default.
- W3136106209 cites W2007262340 @default.
- W3136106209 cites W2019900743 @default.
- W3136106209 cites W2022173539 @default.
- W3136106209 cites W2025165369 @default.
- W3136106209 cites W2027333203 @default.
- W3136106209 cites W2033904036 @default.
- W3136106209 cites W2042562350 @default.
- W3136106209 cites W2053897991 @default.
- W3136106209 cites W2070986256 @default.
- W3136106209 cites W2071927986 @default.
- W3136106209 cites W2075153278 @default.
- W3136106209 cites W2082409306 @default.
- W3136106209 cites W2089043653 @default.
- W3136106209 cites W2172724430 @default.
- W3136106209 cites W2216444323 @default.
- W3136106209 cites W2332474383 @default.
- W3136106209 cites W2518002543 @default.
- W3136106209 cites W2588770771 @default.
- W3136106209 cites W2603613938 @default.
- W3136106209 cites W2738574859 @default.
- W3136106209 cites W2766739537 @default.
- W3136106209 cites W2791905659 @default.
- W3136106209 cites W2792277382 @default.
- W3136106209 cites W2801998166 @default.
- W3136106209 cites W2809211493 @default.
- W3136106209 cites W2890122151 @default.
- W3136106209 cites W2891337828 @default.
- W3136106209 cites W2896459253 @default.
- W3136106209 cites W2904896091 @default.
- W3136106209 cites W2909334078 @default.
- W3136106209 cites W2945040357 @default.
- W3136106209 cites W2952538340 @default.
- W3136106209 cites W2954648193 @default.
- W3136106209 cites W2965996457 @default.
- W3136106209 cites W2994440657 @default.
- W3136106209 cites W2999027251 @default.
- W3136106209 cites W3016579265 @default.
- W3136106209 cites W3031449124 @default.
- W3136106209 cites W3095556171 @default.
- W3136106209 doi "https://doi.org/10.1016/j.eng.2020.10.023" @default.
- W3136106209 hasPublicationYear "2021" @default.
- W3136106209 type Work @default.
- W3136106209 sameAs 3136106209 @default.
- W3136106209 citedByCount "12" @default.
- W3136106209 countsByYear W31361062092021 @default.
- W3136106209 countsByYear W31361062092022 @default.
- W3136106209 countsByYear W31361062092023 @default.
- W3136106209 crossrefType "journal-article" @default.
- W3136106209 hasAuthorship W3136106209A5002997318 @default.
- W3136106209 hasAuthorship W3136106209A5044301848 @default.
- W3136106209 hasAuthorship W3136106209A5064183268 @default.
- W3136106209 hasAuthorship W3136106209A5090622915 @default.
- W3136106209 hasBestOaLocation W31361062091 @default.
- W3136106209 hasConcept C105795698 @default.
- W3136106209 hasConcept C11413529 @default.
- W3136106209 hasConcept C119857082 @default.
- W3136106209 hasConcept C119898033 @default.
- W3136106209 hasConcept C124101348 @default.
- W3136106209 hasConcept C13280743 @default.
- W3136106209 hasConcept C143724316 @default.
- W3136106209 hasConcept C151406439 @default.
- W3136106209 hasConcept C151730666 @default.
- W3136106209 hasConcept C154945302 @default.
- W3136106209 hasConcept C185798385 @default.
- W3136106209 hasConcept C205649164 @default.
- W3136106209 hasConcept C33923547 @default.
- W3136106209 hasConcept C41008148 @default.
- W3136106209 hasConcept C50644808 @default.
- W3136106209 hasConcept C85617194 @default.
- W3136106209 hasConcept C86803240 @default.
- W3136106209 hasConceptScore W3136106209C105795698 @default.
- W3136106209 hasConceptScore W3136106209C11413529 @default.
- W3136106209 hasConceptScore W3136106209C119857082 @default.
- W3136106209 hasConceptScore W3136106209C119898033 @default.
- W3136106209 hasConceptScore W3136106209C124101348 @default.
- W3136106209 hasConceptScore W3136106209C13280743 @default.
- W3136106209 hasConceptScore W3136106209C143724316 @default.
- W3136106209 hasConceptScore W3136106209C151406439 @default.
- W3136106209 hasConceptScore W3136106209C151730666 @default.
- W3136106209 hasConceptScore W3136106209C154945302 @default.
- W3136106209 hasConceptScore W3136106209C185798385 @default.
- W3136106209 hasConceptScore W3136106209C205649164 @default.
- W3136106209 hasConceptScore W3136106209C33923547 @default.
- W3136106209 hasConceptScore W3136106209C41008148 @default.
- W3136106209 hasConceptScore W3136106209C50644808 @default.
- W3136106209 hasConceptScore W3136106209C85617194 @default.