Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136108601> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3136108601 abstract "This paper proposes use of ensemble voting learning classification approach for sentiment classification of movie review dataset collected from IMDB. Sentiment analysis is a technique used to extract opinions from text including reviews, social messaging, etc. Generally, the opinion is classified into positive and negative polarity. The approach has been used in variety of domains including financial, educational, and other areas. Over the years many researchers have worked on sentiment classification to predict the opinion of text using several machine learning algorithms. The work carried out in this paper proposes the use of ensemble voting learning approach in which Naive Bayes (NB), K-nearest neighbor (KNN), random forest (RF), and decision tree (DT). The results are compared with individual classification algorithm and voting approach. We have also used normalized and denormalized data to compare the accuracy results. The results show that using voting approach decreases root mean square error and increases precision of the classifier. Maximum accuracy of 80.13% is obtained with voting and normalized data." @default.
- W3136108601 created "2021-03-29" @default.
- W3136108601 creator A5039949088 @default.
- W3136108601 creator A5079889916 @default.
- W3136108601 date "2021-01-01" @default.
- W3136108601 modified "2023-09-23" @default.
- W3136108601 title "Voting Ensemble Classifier for Sentiment Analysis" @default.
- W3136108601 cites W2306706380 @default.
- W3136108601 cites W2485563451 @default.
- W3136108601 cites W2536583325 @default.
- W3136108601 cites W2783819197 @default.
- W3136108601 cites W2809849087 @default.
- W3136108601 cites W2907918833 @default.
- W3136108601 cites W2997064598 @default.
- W3136108601 doi "https://doi.org/10.1007/978-981-15-9712-1_22" @default.
- W3136108601 hasPublicationYear "2021" @default.
- W3136108601 type Work @default.
- W3136108601 sameAs 3136108601 @default.
- W3136108601 citedByCount "1" @default.
- W3136108601 countsByYear W31361086012021 @default.
- W3136108601 crossrefType "book-chapter" @default.
- W3136108601 hasAuthorship W3136108601A5039949088 @default.
- W3136108601 hasAuthorship W3136108601A5079889916 @default.
- W3136108601 hasConcept C119857082 @default.
- W3136108601 hasConcept C12267149 @default.
- W3136108601 hasConcept C153668964 @default.
- W3136108601 hasConcept C154945302 @default.
- W3136108601 hasConcept C169258074 @default.
- W3136108601 hasConcept C17744445 @default.
- W3136108601 hasConcept C199539241 @default.
- W3136108601 hasConcept C41008148 @default.
- W3136108601 hasConcept C45942800 @default.
- W3136108601 hasConcept C52001869 @default.
- W3136108601 hasConcept C520049643 @default.
- W3136108601 hasConcept C66402592 @default.
- W3136108601 hasConcept C84525736 @default.
- W3136108601 hasConcept C94625758 @default.
- W3136108601 hasConcept C95623464 @default.
- W3136108601 hasConceptScore W3136108601C119857082 @default.
- W3136108601 hasConceptScore W3136108601C12267149 @default.
- W3136108601 hasConceptScore W3136108601C153668964 @default.
- W3136108601 hasConceptScore W3136108601C154945302 @default.
- W3136108601 hasConceptScore W3136108601C169258074 @default.
- W3136108601 hasConceptScore W3136108601C17744445 @default.
- W3136108601 hasConceptScore W3136108601C199539241 @default.
- W3136108601 hasConceptScore W3136108601C41008148 @default.
- W3136108601 hasConceptScore W3136108601C45942800 @default.
- W3136108601 hasConceptScore W3136108601C52001869 @default.
- W3136108601 hasConceptScore W3136108601C520049643 @default.
- W3136108601 hasConceptScore W3136108601C66402592 @default.
- W3136108601 hasConceptScore W3136108601C84525736 @default.
- W3136108601 hasConceptScore W3136108601C94625758 @default.
- W3136108601 hasConceptScore W3136108601C95623464 @default.
- W3136108601 hasLocation W31361086011 @default.
- W3136108601 hasOpenAccess W3136108601 @default.
- W3136108601 hasPrimaryLocation W31361086011 @default.
- W3136108601 hasRelatedWork W10715555 @default.
- W3136108601 hasRelatedWork W11162215 @default.
- W3136108601 hasRelatedWork W14115579 @default.
- W3136108601 hasRelatedWork W14430987 @default.
- W3136108601 hasRelatedWork W5410279 @default.
- W3136108601 hasRelatedWork W6479499 @default.
- W3136108601 hasRelatedWork W6680660 @default.
- W3136108601 hasRelatedWork W9481221 @default.
- W3136108601 hasRelatedWork W14155316 @default.
- W3136108601 hasRelatedWork W8703812 @default.
- W3136108601 isParatext "false" @default.
- W3136108601 isRetracted "false" @default.
- W3136108601 magId "3136108601" @default.
- W3136108601 workType "book-chapter" @default.