Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136117268> ?p ?o ?g. }
- W3136117268 endingPage "14" @default.
- W3136117268 startingPage "1" @default.
- W3136117268 abstract "Soil cohesion (C) is one of the critical soil properties and is closely related to basic soil properties such as particle size distribution, pore size, and shear strength. Hence, it is mainly determined by experimental methods. However, the experimental methods are often time-consuming and costly. Therefore, developing an alternative approach based on machine learning (ML) techniques to solve this problem is highly recommended. In this study, machine learning models, namely, support vector machine (SVM), Gaussian regression process (GPR), and random forest (RF), were built based on a data set of 145 soil samples collected from the Da Nang-Quang Ngai expressway project, Vietnam. The database also includes six input parameters, that is, clay content, moisture content, liquid limit, plastic limit, specific gravity, and void ratio. The performance of the model was assessed by three statistical criteria, namely, the correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE). The results demonstrated that the proposed RF model could accurately predict soil cohesion with high accuracy (R = 0.891) and low error (RMSE = 3.323 and MAE = 2.511), and its predictive capability is better than SVM and GPR. Therefore, the RF model can be used as a cost-effective approach in predicting soil cohesion forces used in the design and inspection of constructions." @default.
- W3136117268 created "2021-03-29" @default.
- W3136117268 creator A5009069223 @default.
- W3136117268 creator A5029814958 @default.
- W3136117268 creator A5069214273 @default.
- W3136117268 date "2021-03-12" @default.
- W3136117268 modified "2023-10-16" @default.
- W3136117268 title "Estimation of Soil Cohesion Using Machine Learning Method: A Random Forest Approach" @default.
- W3136117268 cites W1541815793 @default.
- W3136117268 cites W1552844714 @default.
- W3136117268 cites W1966517947 @default.
- W3136117268 cites W1970820888 @default.
- W3136117268 cites W1977836195 @default.
- W3136117268 cites W1983865151 @default.
- W3136117268 cites W1985707702 @default.
- W3136117268 cites W2004807582 @default.
- W3136117268 cites W2013352515 @default.
- W3136117268 cites W2021744425 @default.
- W3136117268 cites W2023773895 @default.
- W3136117268 cites W2050571546 @default.
- W3136117268 cites W2076563147 @default.
- W3136117268 cites W2102148524 @default.
- W3136117268 cites W2108170078 @default.
- W3136117268 cites W2170252635 @default.
- W3136117268 cites W2216027783 @default.
- W3136117268 cites W2555130351 @default.
- W3136117268 cites W2590668453 @default.
- W3136117268 cites W2605614336 @default.
- W3136117268 cites W2753179649 @default.
- W3136117268 cites W2783208634 @default.
- W3136117268 cites W2889084528 @default.
- W3136117268 cites W2893301845 @default.
- W3136117268 cites W2895038024 @default.
- W3136117268 cites W2902064445 @default.
- W3136117268 cites W2903300125 @default.
- W3136117268 cites W2910813586 @default.
- W3136117268 cites W2911964244 @default.
- W3136117268 cites W2923370583 @default.
- W3136117268 cites W2943973631 @default.
- W3136117268 cites W2948124597 @default.
- W3136117268 cites W2969376125 @default.
- W3136117268 cites W2989559400 @default.
- W3136117268 cites W3011594722 @default.
- W3136117268 cites W3011742849 @default.
- W3136117268 cites W3018826779 @default.
- W3136117268 cites W3115744997 @default.
- W3136117268 cites W3121293617 @default.
- W3136117268 cites W4239510810 @default.
- W3136117268 doi "https://doi.org/10.1155/2021/8873993" @default.
- W3136117268 hasPublicationYear "2021" @default.
- W3136117268 type Work @default.
- W3136117268 sameAs 3136117268 @default.
- W3136117268 citedByCount "17" @default.
- W3136117268 countsByYear W31361172682021 @default.
- W3136117268 countsByYear W31361172682022 @default.
- W3136117268 countsByYear W31361172682023 @default.
- W3136117268 crossrefType "journal-article" @default.
- W3136117268 hasAuthorship W3136117268A5009069223 @default.
- W3136117268 hasAuthorship W3136117268A5029814958 @default.
- W3136117268 hasAuthorship W3136117268A5069214273 @default.
- W3136117268 hasBestOaLocation W31361172681 @default.
- W3136117268 hasConcept C104054115 @default.
- W3136117268 hasConcept C105795698 @default.
- W3136117268 hasConcept C116973930 @default.
- W3136117268 hasConcept C119857082 @default.
- W3136117268 hasConcept C121332964 @default.
- W3136117268 hasConcept C12267149 @default.
- W3136117268 hasConcept C127413603 @default.
- W3136117268 hasConcept C139945424 @default.
- W3136117268 hasConcept C159390177 @default.
- W3136117268 hasConcept C159750122 @default.
- W3136117268 hasConcept C163716315 @default.
- W3136117268 hasConcept C164374781 @default.
- W3136117268 hasConcept C169258074 @default.
- W3136117268 hasConcept C178790620 @default.
- W3136117268 hasConcept C185592680 @default.
- W3136117268 hasConcept C187320778 @default.
- W3136117268 hasConcept C24939127 @default.
- W3136117268 hasConcept C2780092901 @default.
- W3136117268 hasConcept C33923547 @default.
- W3136117268 hasConcept C39432304 @default.
- W3136117268 hasConcept C41008148 @default.
- W3136117268 hasConcept C62520636 @default.
- W3136117268 hasConcept C81692654 @default.
- W3136117268 hasConceptScore W3136117268C104054115 @default.
- W3136117268 hasConceptScore W3136117268C105795698 @default.
- W3136117268 hasConceptScore W3136117268C116973930 @default.
- W3136117268 hasConceptScore W3136117268C119857082 @default.
- W3136117268 hasConceptScore W3136117268C121332964 @default.
- W3136117268 hasConceptScore W3136117268C12267149 @default.
- W3136117268 hasConceptScore W3136117268C127413603 @default.
- W3136117268 hasConceptScore W3136117268C139945424 @default.
- W3136117268 hasConceptScore W3136117268C159390177 @default.
- W3136117268 hasConceptScore W3136117268C159750122 @default.
- W3136117268 hasConceptScore W3136117268C163716315 @default.
- W3136117268 hasConceptScore W3136117268C164374781 @default.
- W3136117268 hasConceptScore W3136117268C169258074 @default.
- W3136117268 hasConceptScore W3136117268C178790620 @default.