Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136121447> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3136121447 abstract "Objective: Ischemic core prediction from CT perfusion (CTP) remains inaccurate compared with gold standard diffusion-weighted imaging (DWI). We evaluated if a deep learning model to predict the DWI lesion from MR perfusion (MRP) could facilitate ischemic core prediction on CTP. Method: Using the multi-center CRISP cohort of acute ischemic stroke patient with CTP before thrombectomy, we included patients with major reperfusion (TICI score≥2b), adequate image quality, and follow-up MRI at 3-7 days. Perfusion parameters including Tmax, mean transient time, cerebral blood flow (CBF), and cerebral blood volume were reconstructed by RAPID software. Core lab experts outlined the stroke lesion on the follow-up MRI. A previously trained MRI model in a separate group of patients was used as a starting point, which used MRP parameters as input and RAPID ischemic core on DWI as ground truth. We fine-tuned this model, using CTP parameters as input, and follow-up MRI as ground truth. Another model was also trained from scratch with only CTP data. 5-fold cross validation was used. Performance of the models was compared with ischemic core (rCBF≤30%) from RAPID software to identify the presence of a large infarct (volume>70 or >100ml). Results: 94 patients in the CRISP trial met the inclusion criteria (mean age 67±15 years, 52% male, median baseline NIHSS 18, median 90-day mRS 2). Without fine-tuning, the MRI model had an agreement of 73% in infarct >70ml, and 69% in >100ml; the MRI model fine-tuned on CT improved the agreement to 77% and 73%; The CT model trained from scratch had agreements of 73% and 71%; All of the deep learning models outperformed the rCBF segmentation from RAPID, which had agreements of 51% and 64%. See Table and figure. Conclusions: It is feasible to apply MRP-based deep learning model to CT. Fine-tuning with CTP data further improves the predictions. All deep learning models predict the stroke lesion after major recanalization better than thresholding approaches based on rCBF." @default.
- W3136121447 created "2021-03-29" @default.
- W3136121447 creator A5000895141 @default.
- W3136121447 creator A5009588075 @default.
- W3136121447 creator A5015032920 @default.
- W3136121447 creator A5021957840 @default.
- W3136121447 creator A5026526616 @default.
- W3136121447 creator A5035343735 @default.
- W3136121447 creator A5065577825 @default.
- W3136121447 date "2021-03-01" @default.
- W3136121447 modified "2023-09-23" @default.
- W3136121447 title "Abstract P319: Can Deep Learning Find the Ischemic Core on CT? Transfer Learning From Pre-Trained MRI-Based Networks" @default.
- W3136121447 doi "https://doi.org/10.1161/str.52.suppl_1.p319" @default.
- W3136121447 hasPublicationYear "2021" @default.
- W3136121447 type Work @default.
- W3136121447 sameAs 3136121447 @default.
- W3136121447 citedByCount "0" @default.
- W3136121447 crossrefType "journal-article" @default.
- W3136121447 hasAuthorship W3136121447A5000895141 @default.
- W3136121447 hasAuthorship W3136121447A5009588075 @default.
- W3136121447 hasAuthorship W3136121447A5015032920 @default.
- W3136121447 hasAuthorship W3136121447A5021957840 @default.
- W3136121447 hasAuthorship W3136121447A5026526616 @default.
- W3136121447 hasAuthorship W3136121447A5035343735 @default.
- W3136121447 hasAuthorship W3136121447A5065577825 @default.
- W3136121447 hasConcept C126322002 @default.
- W3136121447 hasConcept C126838900 @default.
- W3136121447 hasConcept C127413603 @default.
- W3136121447 hasConcept C135691158 @default.
- W3136121447 hasConcept C143409427 @default.
- W3136121447 hasConcept C146957229 @default.
- W3136121447 hasConcept C149550507 @default.
- W3136121447 hasConcept C157767197 @default.
- W3136121447 hasConcept C2780645631 @default.
- W3136121447 hasConcept C2989005 @default.
- W3136121447 hasConcept C71924100 @default.
- W3136121447 hasConcept C78519656 @default.
- W3136121447 hasConceptScore W3136121447C126322002 @default.
- W3136121447 hasConceptScore W3136121447C126838900 @default.
- W3136121447 hasConceptScore W3136121447C127413603 @default.
- W3136121447 hasConceptScore W3136121447C135691158 @default.
- W3136121447 hasConceptScore W3136121447C143409427 @default.
- W3136121447 hasConceptScore W3136121447C146957229 @default.
- W3136121447 hasConceptScore W3136121447C149550507 @default.
- W3136121447 hasConceptScore W3136121447C157767197 @default.
- W3136121447 hasConceptScore W3136121447C2780645631 @default.
- W3136121447 hasConceptScore W3136121447C2989005 @default.
- W3136121447 hasConceptScore W3136121447C71924100 @default.
- W3136121447 hasConceptScore W3136121447C78519656 @default.
- W3136121447 hasIssue "Suppl_1" @default.
- W3136121447 hasLocation W31361214471 @default.
- W3136121447 hasOpenAccess W3136121447 @default.
- W3136121447 hasPrimaryLocation W31361214471 @default.
- W3136121447 hasRelatedWork W1977221321 @default.
- W3136121447 hasRelatedWork W2024932886 @default.
- W3136121447 hasRelatedWork W2162999504 @default.
- W3136121447 hasRelatedWork W2312614836 @default.
- W3136121447 hasRelatedWork W2349545896 @default.
- W3136121447 hasRelatedWork W2367716615 @default.
- W3136121447 hasRelatedWork W2368632331 @default.
- W3136121447 hasRelatedWork W2437180545 @default.
- W3136121447 hasRelatedWork W3030614551 @default.
- W3136121447 hasRelatedWork W3032311490 @default.
- W3136121447 hasVolume "52" @default.
- W3136121447 isParatext "false" @default.
- W3136121447 isRetracted "false" @default.
- W3136121447 magId "3136121447" @default.
- W3136121447 workType "article" @default.