Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136132358> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3136132358 abstract "A weighted directed network (WDN) is a directed graph in which each edge is associated to a unique value called weight. These networks are very suitable for modeling real-world social networks in which there is an assessment of one vertex toward other vertices. One of the main problems studied in this paper is prediction of edge weights in such networks. We introduce, for the first time, a metric geometry approach to studying edge weight prediction in WDNs. We modify a usual notion of WDNs, and introduce a new type of WDNs which we coin the term almost-weighted directed networks (AWDNs). AWDNs can capture the weight information of a network from a given training set. We then construct a class of metrics (or distances) for AWDNs which equips such networks with a metric space structure. Using the metric geometry structure of AWDNs, we propose modified k nearest neighbors (kNN) methods and modified support-vector machine (SVM) methods which will then be used to predict edge weights in AWDNs. In many real-world datasets, in addition to edge weights, one can also associate weights to vertices which capture information of vertices; association of weights to vertices especially plays an important role in graph embedding problems. Adopting a similar approach, we introduce two new types of directed networks in which weights are associated to either a subset of origin vertices or a subset of terminal vertices. We, for the first time, construct novel classes of metrics on such networks, and based on these new metrics propose modified kNN and SVM methods for predicting weights of origins and terminals in these networks. We provide experimental results on several real-world datasets, using our geometric methodologies." @default.
- W3136132358 created "2021-03-29" @default.
- W3136132358 creator A5055953103 @default.
- W3136132358 creator A5066307947 @default.
- W3136132358 creator A5086750806 @default.
- W3136132358 date "2020-12-10" @default.
- W3136132358 modified "2023-09-24" @default.
- W3136132358 title "Weight Prediction for Variants of Weighted Directed Networks" @default.
- W3136132358 cites W1554944419 @default.
- W3136132358 cites W2024962845 @default.
- W3136132358 cites W2027135291 @default.
- W3136132358 cites W2040379910 @default.
- W3136132358 cites W2067425759 @default.
- W3136132358 cites W2073415627 @default.
- W3136132358 cites W2075312405 @default.
- W3136132358 cites W2101396617 @default.
- W3136132358 cites W2112461976 @default.
- W3136132358 cites W2114051435 @default.
- W3136132358 cites W2133266261 @default.
- W3136132358 cites W2415027247 @default.
- W3136132358 cites W2554230530 @default.
- W3136132358 cites W2585835859 @default.
- W3136132358 cites W2783466287 @default.
- W3136132358 doi "https://doi.org/10.1109/bigdata50022.2020.9377892" @default.
- W3136132358 hasPublicationYear "2020" @default.
- W3136132358 type Work @default.
- W3136132358 sameAs 3136132358 @default.
- W3136132358 citedByCount "0" @default.
- W3136132358 crossrefType "proceedings-article" @default.
- W3136132358 hasAuthorship W3136132358A5055953103 @default.
- W3136132358 hasAuthorship W3136132358A5066307947 @default.
- W3136132358 hasAuthorship W3136132358A5086750806 @default.
- W3136132358 hasBestOaLocation W31361323582 @default.
- W3136132358 hasConcept C11413529 @default.
- W3136132358 hasConcept C118615104 @default.
- W3136132358 hasConcept C132525143 @default.
- W3136132358 hasConcept C154945302 @default.
- W3136132358 hasConcept C162307627 @default.
- W3136132358 hasConcept C162324750 @default.
- W3136132358 hasConcept C176217482 @default.
- W3136132358 hasConcept C198043062 @default.
- W3136132358 hasConcept C199360897 @default.
- W3136132358 hasConcept C21547014 @default.
- W3136132358 hasConcept C2780801425 @default.
- W3136132358 hasConcept C33923547 @default.
- W3136132358 hasConcept C41008148 @default.
- W3136132358 hasConcept C41608201 @default.
- W3136132358 hasConcept C80444323 @default.
- W3136132358 hasConcept C80899671 @default.
- W3136132358 hasConceptScore W3136132358C11413529 @default.
- W3136132358 hasConceptScore W3136132358C118615104 @default.
- W3136132358 hasConceptScore W3136132358C132525143 @default.
- W3136132358 hasConceptScore W3136132358C154945302 @default.
- W3136132358 hasConceptScore W3136132358C162307627 @default.
- W3136132358 hasConceptScore W3136132358C162324750 @default.
- W3136132358 hasConceptScore W3136132358C176217482 @default.
- W3136132358 hasConceptScore W3136132358C198043062 @default.
- W3136132358 hasConceptScore W3136132358C199360897 @default.
- W3136132358 hasConceptScore W3136132358C21547014 @default.
- W3136132358 hasConceptScore W3136132358C2780801425 @default.
- W3136132358 hasConceptScore W3136132358C33923547 @default.
- W3136132358 hasConceptScore W3136132358C41008148 @default.
- W3136132358 hasConceptScore W3136132358C41608201 @default.
- W3136132358 hasConceptScore W3136132358C80444323 @default.
- W3136132358 hasConceptScore W3136132358C80899671 @default.
- W3136132358 hasLocation W31361323581 @default.
- W3136132358 hasLocation W31361323582 @default.
- W3136132358 hasOpenAccess W3136132358 @default.
- W3136132358 hasPrimaryLocation W31361323581 @default.
- W3136132358 hasRelatedWork W10405577 @default.
- W3136132358 hasRelatedWork W11971422 @default.
- W3136132358 hasRelatedWork W1849215 @default.
- W3136132358 hasRelatedWork W212088 @default.
- W3136132358 hasRelatedWork W3422034 @default.
- W3136132358 hasRelatedWork W4109773 @default.
- W3136132358 hasRelatedWork W5374421 @default.
- W3136132358 hasRelatedWork W7842670 @default.
- W3136132358 hasRelatedWork W8538211 @default.
- W3136132358 hasRelatedWork W12233055 @default.
- W3136132358 isParatext "false" @default.
- W3136132358 isRetracted "false" @default.
- W3136132358 magId "3136132358" @default.
- W3136132358 workType "article" @default.