Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136136153> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3136136153 abstract "Wrist-worn fitness trackers and smartwatches are proliferating with an incessant attention towards health tracking. Given the growing popularity of wrist-worn devices across all age groups, a rigorous evaluation for recognizing hallmark measures of physical activities and estimating energy expenditure is needed to compare their accuracy across the lifespan. The goal of the study was to build machine learning models to recognize physical activity type (sedentary, locomotion, and lifestyle) and intensity (low, light, and moderate), identify individual physical activities, and estimate energy expenditure. The primary aim of this study was to build and compare models for different age groups: young [20-50 years], middle (50-70 years], and old (70-89 years]. Participants (n = 253, 62% women, aged 20-89 years old) performed a battery of 33 daily activities in a standardized laboratory setting while wearing a portable metabolic unit to measure energy expenditure that was used to gauge metabolic intensity. Tri-axial accelerometer collected data at 80-100 Hz from the right wrist that was processed for 49 features. Results from random forests algorithm were quite accurate in recognizing physical activity type, the F1-Score range across age groups was: sedentary [0.955 – 0.973], locomotion [0.942 – 0.964], and lifestyle [0.913 – 0.949]. Recognizing physical activity intensity resulted in lower performance, the F1-Score range across age groups was: sedentary [0.919 – 0.947], light [0.813 – 0.828], and moderate [0.846 – 0.875]. The root mean square error range was [0.835 – 1.009] for the estimation of energy expenditure. The F1-Score range for recognizing individual physical activities was [0.263 – 0.784]. Performances were relatively similar and the accelerometer data features were ranked similarly between age groups. In conclusion, data features derived from wrist worn accelerometers lead to high-moderate accuracy estimating physical activity type, intensity and energy expenditure and are robust to potential age-differences." @default.
- W3136136153 created "2021-03-29" @default.
- W3136136153 creator A5005029488 @default.
- W3136136153 creator A5017739729 @default.
- W3136136153 creator A5022687499 @default.
- W3136136153 creator A5041394039 @default.
- W3136136153 creator A5051749869 @default.
- W3136136153 creator A5073753404 @default.
- W3136136153 date "2021-03-12" @default.
- W3136136153 modified "2023-09-25" @default.
- W3136136153 title "Employing Machine Learning to Estimate Hallmark Measures of Physical Activities from Wrist-worn Devices Across Age Groups" @default.
- W3136136153 doi "https://doi.org/10.20944/preprints202103.0333.v1" @default.
- W3136136153 hasPublicationYear "2021" @default.
- W3136136153 type Work @default.
- W3136136153 sameAs 3136136153 @default.
- W3136136153 citedByCount "0" @default.
- W3136136153 crossrefType "posted-content" @default.
- W3136136153 hasAuthorship W3136136153A5005029488 @default.
- W3136136153 hasAuthorship W3136136153A5017739729 @default.
- W3136136153 hasAuthorship W3136136153A5022687499 @default.
- W3136136153 hasAuthorship W3136136153A5041394039 @default.
- W3136136153 hasAuthorship W3136136153A5051749869 @default.
- W3136136153 hasAuthorship W3136136153A5073753404 @default.
- W3136136153 hasBestOaLocation W31361361531 @default.
- W3136136153 hasConcept C126838900 @default.
- W3136136153 hasConcept C134018914 @default.
- W3136136153 hasConcept C1862650 @default.
- W3136136153 hasConcept C2778216619 @default.
- W3136136153 hasConcept C2988147884 @default.
- W3136136153 hasConcept C3020255362 @default.
- W3136136153 hasConcept C6387636 @default.
- W3136136153 hasConcept C71924100 @default.
- W3136136153 hasConcept C74909509 @default.
- W3136136153 hasConcept C99508421 @default.
- W3136136153 hasConceptScore W3136136153C126838900 @default.
- W3136136153 hasConceptScore W3136136153C134018914 @default.
- W3136136153 hasConceptScore W3136136153C1862650 @default.
- W3136136153 hasConceptScore W3136136153C2778216619 @default.
- W3136136153 hasConceptScore W3136136153C2988147884 @default.
- W3136136153 hasConceptScore W3136136153C3020255362 @default.
- W3136136153 hasConceptScore W3136136153C6387636 @default.
- W3136136153 hasConceptScore W3136136153C71924100 @default.
- W3136136153 hasConceptScore W3136136153C74909509 @default.
- W3136136153 hasConceptScore W3136136153C99508421 @default.
- W3136136153 hasLocation W31361361531 @default.
- W3136136153 hasLocation W31361361532 @default.
- W3136136153 hasOpenAccess W3136136153 @default.
- W3136136153 hasPrimaryLocation W31361361531 @default.
- W3136136153 hasRelatedWork W2416980823 @default.
- W3136136153 hasRelatedWork W3035743576 @default.
- W3136136153 hasRelatedWork W3115442474 @default.
- W3136136153 hasRelatedWork W4214617600 @default.
- W3136136153 hasRelatedWork W4255353872 @default.
- W3136136153 hasRelatedWork W4292292198 @default.
- W3136136153 hasRelatedWork W4294842419 @default.
- W3136136153 hasRelatedWork W4319313941 @default.
- W3136136153 hasRelatedWork W4362694235 @default.
- W3136136153 hasRelatedWork W4367293640 @default.
- W3136136153 isParatext "false" @default.
- W3136136153 isRetracted "false" @default.
- W3136136153 magId "3136136153" @default.
- W3136136153 workType "article" @default.