Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136139906> ?p ?o ?g. }
- W3136139906 endingPage "42620" @default.
- W3136139906 startingPage "42610" @default.
- W3136139906 abstract "Eliminating the undesirable features is crucial to computer vision applications since undesirable features degrade the visibility of images. For that purpose, denoising, dehazing and deraining have been actively studied in both traditional model-based approaches and modern deep learning methods. However, elimination of hair in dermoscopic images has not received sufficient attention despite its significance and potential. Meanwhile, hair removal algorithms remain within the classical morphological methodologies, while only a few attempts apply the latest data-driven techniques. Hair is desired to be removed in dermoscopy applications because it causes undesired effects such as occlusions in lesion areas. However, removing hair is challenging because of its inherent complex structure and variations. In this paper, we propose a new unsupervised algorithm for hair removal and evaluate it on a real-world melanoma dataset. The proposed method eliminates hair from dermoscopic images by inducing a reconstructed distribution of images with hair to resemble a hairless distribution using generative adversarial learning. In the generative adversarial learning framework, hair features are characterized with a coarse-grained label simply via a binary classifier. At the same time, the important features of the lesions are preserved by minimizing L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> -norm reconstruction loss based on Laplace noise assumption. The qualitative evaluation of the hair-removed results show that the proposed algorithm is robust to hair variations, and the quantitative results demonstrate that applying our hair removal algorithm considerably improves the performance of melanoma classification, outperforming the benchmarks." @default.
- W3136139906 created "2021-03-29" @default.
- W3136139906 creator A5031787859 @default.
- W3136139906 creator A5065943331 @default.
- W3136139906 date "2021-01-01" @default.
- W3136139906 modified "2023-10-15" @default.
- W3136139906 title "Unsupervised Feature Elimination via Generative Adversarial Networks: Application to Hair Removal in Melanoma Classification" @default.
- W3136139906 cites W1978749115 @default.
- W3136139906 cites W1987207115 @default.
- W3136139906 cites W1991607872 @default.
- W3136139906 cites W2023204574 @default.
- W3136139906 cites W2027898483 @default.
- W3136139906 cites W2028990532 @default.
- W3136139906 cites W2048695508 @default.
- W3136139906 cites W2056370875 @default.
- W3136139906 cites W2058843488 @default.
- W3136139906 cites W2078187356 @default.
- W3136139906 cites W2097073572 @default.
- W3136139906 cites W2106402996 @default.
- W3136139906 cites W2114867966 @default.
- W3136139906 cites W2121396509 @default.
- W3136139906 cites W2128254161 @default.
- W3136139906 cites W2154815154 @default.
- W3136139906 cites W2170969730 @default.
- W3136139906 cites W2194775991 @default.
- W3136139906 cites W2209874411 @default.
- W3136139906 cites W2256362396 @default.
- W3136139906 cites W2466666260 @default.
- W3136139906 cites W2508457857 @default.
- W3136139906 cites W2509784253 @default.
- W3136139906 cites W2519481857 @default.
- W3136139906 cites W2536599074 @default.
- W3136139906 cites W2539781702 @default.
- W3136139906 cites W2549139847 @default.
- W3136139906 cites W2559264300 @default.
- W3136139906 cites W2584009249 @default.
- W3136139906 cites W2593768305 @default.
- W3136139906 cites W2617087439 @default.
- W3136139906 cites W2617199345 @default.
- W3136139906 cites W2740982616 @default.
- W3136139906 cites W2743780012 @default.
- W3136139906 cites W2777170053 @default.
- W3136139906 cites W2779176852 @default.
- W3136139906 cites W2789587241 @default.
- W3136139906 cites W2790883954 @default.
- W3136139906 cites W2794022343 @default.
- W3136139906 cites W2798278116 @default.
- W3136139906 cites W2806118840 @default.
- W3136139906 cites W2807079708 @default.
- W3136139906 cites W2883609492 @default.
- W3136139906 cites W2887181327 @default.
- W3136139906 cites W2890722964 @default.
- W3136139906 cites W2893531431 @default.
- W3136139906 cites W2916412824 @default.
- W3136139906 cites W2945008339 @default.
- W3136139906 cites W2962754725 @default.
- W3136139906 cites W2962793481 @default.
- W3136139906 cites W2963017889 @default.
- W3136139906 cites W2963152299 @default.
- W3136139906 cites W2963470893 @default.
- W3136139906 cites W2963797156 @default.
- W3136139906 cites W2963853763 @default.
- W3136139906 cites W2968087827 @default.
- W3136139906 cites W2970005485 @default.
- W3136139906 cites W2970287290 @default.
- W3136139906 cites W2970842755 @default.
- W3136139906 cites W2979436723 @default.
- W3136139906 cites W2979830539 @default.
- W3136139906 cites W2990007814 @default.
- W3136139906 cites W3029477994 @default.
- W3136139906 cites W3048853714 @default.
- W3136139906 cites W3091153441 @default.
- W3136139906 cites W3093524551 @default.
- W3136139906 cites W3104725225 @default.
- W3136139906 doi "https://doi.org/10.1109/access.2021.3065701" @default.
- W3136139906 hasPublicationYear "2021" @default.
- W3136139906 type Work @default.
- W3136139906 sameAs 3136139906 @default.
- W3136139906 citedByCount "13" @default.
- W3136139906 countsByYear W31361399062021 @default.
- W3136139906 countsByYear W31361399062022 @default.
- W3136139906 countsByYear W31361399062023 @default.
- W3136139906 crossrefType "journal-article" @default.
- W3136139906 hasAuthorship W3136139906A5031787859 @default.
- W3136139906 hasAuthorship W3136139906A5065943331 @default.
- W3136139906 hasBestOaLocation W31361399061 @default.
- W3136139906 hasConcept C105795698 @default.
- W3136139906 hasConcept C108583219 @default.
- W3136139906 hasConcept C153180895 @default.
- W3136139906 hasConcept C154945302 @default.
- W3136139906 hasConcept C163294075 @default.
- W3136139906 hasConcept C166963901 @default.
- W3136139906 hasConcept C31972630 @default.
- W3136139906 hasConcept C33923547 @default.
- W3136139906 hasConcept C39890363 @default.
- W3136139906 hasConcept C41008148 @default.
- W3136139906 hasConcept C52622490 @default.
- W3136139906 hasConcept C95623464 @default.