Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136143436> ?p ?o ?g. }
- W3136143436 endingPage "251" @default.
- W3136143436 startingPage "242" @default.
- W3136143436 abstract "Well-defined fluoropolymers exhibit unique properties such as excellent oil and water repellency, satisfactory thermal stability, a low refractive index, and low surface energy. The origin of these properties is attributed to the presence of a strong electronegative and low polarizable fluorine atom in the backbone of such polymers, which leads to a strong C–F bond (with a high bond dissociation energy of 485 kJ mol–1). Because of these features, these polymers have found applications as functional coatings, thermoplastics, biomedical items, separators, and binders for Li ion batteries, fuel cell membranes, piezoelectric devices, high-quality wires and cables, and so forth. Usually, fluoropolymers are synthesized by the conventional radical (co)polymerization of fluoroalkenes, which leads to the production of (co)polymers with an ill-defined end group, uncontrolled molar mass, and high dispersity values. In the last two decades, significant developments of various reversible deactivation radical polymerization (RDRP) techniques have helped the design of macromolecular architectures (including block, graft, star, and dendrimers) on demand. However, for relevant new applications, well-defined fluoropolymers with controlled macromolecular architectures (e.g., block copolymers as thermoplastic elastomers and electroactive polymers or graft copolymers for fuel cell membranes) are required.Several RDRP methods, developed in the last two decades, have paved the way for the synthesis of (co)polymers with well-defined molar mass, dispersity, chain end-functionality, and macromolecular architectures. Some of these RDRP techniques have been successfully employed for the synthesis of well-defined fluorinated copolymers. These techniques include iodine-transfer polymerization (ITP), reversible addition–fragmentation chain-transfer (RAFT) polymerization, organometallic-mediated radical polymerization (OMRP), and, to a lesser extent, nitroxide-mediated polymerization (NMP). Impressive control of the molar mass parameters of the fluoropolymers synthesized via these techniques also encouraged the researchers to combine these techniques with other postpolymerization strategies, leading to innovative novel polymeric materials.Thus, synthesized well-defined fluoropolymers exhibited a unique combination of properties (such as excellent weather resistance, high thermal/chemical/aging resistance, morphological versatility, and a low dielectric constant/flammability/refractive index). These led to the application of such developed materials in various high-technology applications such as high-performance elastomers, coatings for marine antifouling applications, fluorinated surfactants, fuel cell membranes, and gel polymer electrolytes for Li ion batteries.Newer advances in the field of polymer synthesis techniques are the need of the hour in order to synthesize more advanced fluorinated materials which may change the use of such polymers in engineering and biomedical fields in the current century. However, it should be kept in mind that success in this regard shall heavily depend on a deeper understanding of the polymerization process and structure–activity relationships." @default.
- W3136143436 created "2021-03-29" @default.
- W3136143436 creator A5037073212 @default.
- W3136143436 creator A5072470209 @default.
- W3136143436 creator A5085025919 @default.
- W3136143436 creator A5089270775 @default.
- W3136143436 date "2021-03-25" @default.
- W3136143436 modified "2023-10-16" @default.
- W3136143436 title "Well-Defined Fluorinated Copolymers: Current Status and Future Perspectives" @default.
- W3136143436 cites W2001991362 @default.
- W3136143436 cites W2006312224 @default.
- W3136143436 cites W2011824077 @default.
- W3136143436 cites W2016334125 @default.
- W3136143436 cites W2021014352 @default.
- W3136143436 cites W2031302824 @default.
- W3136143436 cites W2037879206 @default.
- W3136143436 cites W2057695671 @default.
- W3136143436 cites W2059454120 @default.
- W3136143436 cites W2060051445 @default.
- W3136143436 cites W2076856419 @default.
- W3136143436 cites W2094783146 @default.
- W3136143436 cites W2095486826 @default.
- W3136143436 cites W2145197657 @default.
- W3136143436 cites W2160330596 @default.
- W3136143436 cites W2318038859 @default.
- W3136143436 cites W2327022922 @default.
- W3136143436 cites W2333824004 @default.
- W3136143436 cites W2335135392 @default.
- W3136143436 cites W2513053375 @default.
- W3136143436 cites W2515878262 @default.
- W3136143436 cites W2517734492 @default.
- W3136143436 cites W2537113932 @default.
- W3136143436 cites W2566517745 @default.
- W3136143436 cites W2575814545 @default.
- W3136143436 cites W2580954066 @default.
- W3136143436 cites W2590252304 @default.
- W3136143436 cites W2600146821 @default.
- W3136143436 cites W2609870481 @default.
- W3136143436 cites W2612607559 @default.
- W3136143436 cites W2619115129 @default.
- W3136143436 cites W2751873712 @default.
- W3136143436 cites W2755736980 @default.
- W3136143436 cites W2768777252 @default.
- W3136143436 cites W2772841481 @default.
- W3136143436 cites W2783118062 @default.
- W3136143436 cites W2791990039 @default.
- W3136143436 cites W2884082338 @default.
- W3136143436 cites W2888153388 @default.
- W3136143436 cites W2905218447 @default.
- W3136143436 cites W2907745354 @default.
- W3136143436 cites W2911330227 @default.
- W3136143436 cites W2913400434 @default.
- W3136143436 cites W2914842717 @default.
- W3136143436 cites W2944759844 @default.
- W3136143436 cites W3013312312 @default.
- W3136143436 cites W3018254732 @default.
- W3136143436 cites W3024777550 @default.
- W3136143436 cites W3030196633 @default.
- W3136143436 cites W3044931082 @default.
- W3136143436 cites W3110146887 @default.
- W3136143436 cites W3119594582 @default.
- W3136143436 cites W3137713946 @default.
- W3136143436 cites W4230858953 @default.
- W3136143436 doi "https://doi.org/10.1021/accountsmr.1c00015" @default.
- W3136143436 hasPublicationYear "2021" @default.
- W3136143436 type Work @default.
- W3136143436 sameAs 3136143436 @default.
- W3136143436 citedByCount "25" @default.
- W3136143436 countsByYear W31361434362021 @default.
- W3136143436 countsByYear W31361434362022 @default.
- W3136143436 countsByYear W31361434362023 @default.
- W3136143436 crossrefType "journal-article" @default.
- W3136143436 hasAuthorship W3136143436A5037073212 @default.
- W3136143436 hasAuthorship W3136143436A5072470209 @default.
- W3136143436 hasAuthorship W3136143436A5085025919 @default.
- W3136143436 hasAuthorship W3136143436A5089270775 @default.
- W3136143436 hasBestOaLocation W31361434362 @default.
- W3136143436 hasConcept C119599485 @default.
- W3136143436 hasConcept C127413603 @default.
- W3136143436 hasConcept C148043351 @default.
- W3136143436 hasConcept C15920480 @default.
- W3136143436 hasConcept C159985019 @default.
- W3136143436 hasConcept C192562407 @default.
- W3136143436 hasConcept C521977710 @default.
- W3136143436 hasConceptScore W3136143436C119599485 @default.
- W3136143436 hasConceptScore W3136143436C127413603 @default.
- W3136143436 hasConceptScore W3136143436C148043351 @default.
- W3136143436 hasConceptScore W3136143436C15920480 @default.
- W3136143436 hasConceptScore W3136143436C159985019 @default.
- W3136143436 hasConceptScore W3136143436C192562407 @default.
- W3136143436 hasConceptScore W3136143436C521977710 @default.
- W3136143436 hasFunder F4320320721 @default.
- W3136143436 hasFunder F4320320883 @default.
- W3136143436 hasFunder F4320322892 @default.
- W3136143436 hasFunder F4320334771 @default.
- W3136143436 hasIssue "4" @default.
- W3136143436 hasLocation W31361434361 @default.
- W3136143436 hasLocation W31361434362 @default.