Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136156967> ?p ?o ?g. }
- W3136156967 endingPage "1184" @default.
- W3136156967 startingPage "1163" @default.
- W3136156967 abstract "Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle the challenges of forecasting ultra-long time series using the industry-standard MapReduce framework. The proposed model combination approach retains the local time dependency. It utilizes a straightforward splitting across samples to facilitate distributed forecasting by combining the local estimators of time series models delivered from worker nodes and minimizing a global loss function. Instead of unrealistically assuming the data generating process (DGP) of an ultra-long time series stays invariant, we only make assumptions on the DGP of subseries spanning shorter time periods. We investigate the performance of the proposed approach with AutoRegressive Integrated Moving Average (ARIMA) models using the real data application as well as numerical simulations. Our approach improves forecasting accuracy and computational efficiency in point forecasts and prediction intervals, especially for longer forecast horizons, compared to directly fitting the whole data with ARIMA models. Moreover, we explore some potential factors that may affect the forecasting performance of our approach." @default.
- W3136156967 created "2021-03-29" @default.
- W3136156967 creator A5009379140 @default.
- W3136156967 creator A5012991424 @default.
- W3136156967 creator A5038747906 @default.
- W3136156967 creator A5075963304 @default.
- W3136156967 date "2023-07-01" @default.
- W3136156967 modified "2023-10-12" @default.
- W3136156967 title "Distributed ARIMA models for ultra-long time series" @default.
- W3136156967 cites W1588163064 @default.
- W3136156967 cites W1984255960 @default.
- W3136156967 cites W2000303778 @default.
- W3136156967 cites W2016210396 @default.
- W3136156967 cites W2025720061 @default.
- W3136156967 cites W2032927332 @default.
- W3136156967 cites W2068448163 @default.
- W3136156967 cites W2073210389 @default.
- W3136156967 cites W2073681337 @default.
- W3136156967 cites W2079828365 @default.
- W3136156967 cites W2110401950 @default.
- W3136156967 cites W2116512828 @default.
- W3136156967 cites W2119565742 @default.
- W3136156967 cites W2146774335 @default.
- W3136156967 cites W2149173129 @default.
- W3136156967 cites W2162174678 @default.
- W3136156967 cites W2336207750 @default.
- W3136156967 cites W2345542489 @default.
- W3136156967 cites W2807770617 @default.
- W3136156967 cites W2883326783 @default.
- W3136156967 cites W2891665774 @default.
- W3136156967 cites W2896498835 @default.
- W3136156967 cites W2909973217 @default.
- W3136156967 cites W2924971168 @default.
- W3136156967 cites W2963507686 @default.
- W3136156967 cites W2964231067 @default.
- W3136156967 cites W2964274100 @default.
- W3136156967 cites W2982674132 @default.
- W3136156967 cites W2998133347 @default.
- W3136156967 cites W3030907323 @default.
- W3136156967 cites W3036118361 @default.
- W3136156967 cites W3037110414 @default.
- W3136156967 cites W3038713838 @default.
- W3136156967 cites W3098826229 @default.
- W3136156967 cites W3124104966 @default.
- W3136156967 cites W3158797006 @default.
- W3136156967 cites W4206189171 @default.
- W3136156967 cites W4292363360 @default.
- W3136156967 doi "https://doi.org/10.1016/j.ijforecast.2022.05.001" @default.
- W3136156967 hasPublicationYear "2023" @default.
- W3136156967 type Work @default.
- W3136156967 sameAs 3136156967 @default.
- W3136156967 citedByCount "8" @default.
- W3136156967 countsByYear W31361569672022 @default.
- W3136156967 countsByYear W31361569672023 @default.
- W3136156967 crossrefType "journal-article" @default.
- W3136156967 hasAuthorship W3136156967A5009379140 @default.
- W3136156967 hasAuthorship W3136156967A5012991424 @default.
- W3136156967 hasAuthorship W3136156967A5038747906 @default.
- W3136156967 hasAuthorship W3136156967A5075963304 @default.
- W3136156967 hasBestOaLocation W31361569672 @default.
- W3136156967 hasConcept C105795698 @default.
- W3136156967 hasConcept C119857082 @default.
- W3136156967 hasConcept C143724316 @default.
- W3136156967 hasConcept C149782125 @default.
- W3136156967 hasConcept C151406439 @default.
- W3136156967 hasConcept C151730666 @default.
- W3136156967 hasConcept C154945302 @default.
- W3136156967 hasConcept C159877910 @default.
- W3136156967 hasConcept C185429906 @default.
- W3136156967 hasConcept C19768560 @default.
- W3136156967 hasConcept C24338571 @default.
- W3136156967 hasConcept C33923547 @default.
- W3136156967 hasConcept C41008148 @default.
- W3136156967 hasConcept C86803240 @default.
- W3136156967 hasConceptScore W3136156967C105795698 @default.
- W3136156967 hasConceptScore W3136156967C119857082 @default.
- W3136156967 hasConceptScore W3136156967C143724316 @default.
- W3136156967 hasConceptScore W3136156967C149782125 @default.
- W3136156967 hasConceptScore W3136156967C151406439 @default.
- W3136156967 hasConceptScore W3136156967C151730666 @default.
- W3136156967 hasConceptScore W3136156967C154945302 @default.
- W3136156967 hasConceptScore W3136156967C159877910 @default.
- W3136156967 hasConceptScore W3136156967C185429906 @default.
- W3136156967 hasConceptScore W3136156967C19768560 @default.
- W3136156967 hasConceptScore W3136156967C24338571 @default.
- W3136156967 hasConceptScore W3136156967C33923547 @default.
- W3136156967 hasConceptScore W3136156967C41008148 @default.
- W3136156967 hasConceptScore W3136156967C86803240 @default.
- W3136156967 hasIssue "3" @default.
- W3136156967 hasLocation W31361569671 @default.
- W3136156967 hasLocation W31361569672 @default.
- W3136156967 hasLocation W31361569673 @default.
- W3136156967 hasLocation W31361569674 @default.
- W3136156967 hasLocation W31361569675 @default.
- W3136156967 hasOpenAccess W3136156967 @default.
- W3136156967 hasPrimaryLocation W31361569671 @default.
- W3136156967 hasRelatedWork W1714597287 @default.
- W3136156967 hasRelatedWork W1985464957 @default.