Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136158255> ?p ?o ?g. }
- W3136158255 endingPage "2089" @default.
- W3136158255 startingPage "2074" @default.
- W3136158255 abstract "To reduce time and cost, virtual ligand screening (VLS) often precedes experimental ligand screening in modern drug discovery. Traditionally, high-resolution structure-based docking approaches rely on experimental structures, while ligand-based approaches need known binders to the target protein and only explore their nearby chemical space. In contrast, our structure-based FINDSITEcomb2.0 approach takes advantage of predicted, low-resolution structures and information from ligands that bind distantly related proteins whose binding sites are similar to the target protein. Using a boosted tree regression machine learning framework, we significantly improved FINDSITEcomb2.0 by integrating ligand fragment scores as encoded by molecular fingerprints with the global ligand similarity scores of FINDSITEcomb2.0. The new approach, FRAGSITE, exploits our observation that ligand fragments, e.g., rings, tend to interact with stereochemically conserved protein subpockets that also occur in evolutionarily unrelated proteins. FRAGSITE was benchmarked on the 102 protein DUD-E set, where any template protein whose sequence identify >30% to the target was excluded. Within the top 100 ranked molecules, FRAGSITE improves VLS precision and recall by 14.3 and 18.5%, respectively, relative to FINDSITEcomb2.0. Moreover, the mean top 1% enrichment factor increases from 25.2 to 30.2. On average, both outperform state-of-the-art deep learning-based methods such as AtomNet. On the more challenging unbiased set LIT-PCBA, FRAGSITE also shows better performance than ligand similarity-based and docking approaches such as two-dimensional ECFP4 and Surflex-Dock v.3066. On a subset of 23 targets from DEKOIS 2.0, FRAGSITE shows much better performance than the boosted tree regression-based, vScreenML scoring function. Experimental testing of FRAGSITE's predictions shows that it has more hits and covers a more diverse region of chemical space than FINDSITEcomb2.0. For the two proteins that were experimentally tested, DHFR, a well-studied protein that catalyzes the conversion of dihydrofolate to tetrahydrofolate, and the kinase ACVR1, FRAGSITE identified new small-molecule nanomolar binders. Interestingly, one new binder of DHFR is a kinase inhibitor predicted to bind in a new subpocket. For ACVR1, FRAGSITE identified new molecules that have diverse scaffolds and estimated nanomolar to micromolar affinities. Thus, FRAGSITE shows significant improvement over prior state-of-the-art ligand virtual screening approaches. A web server is freely available for academic users at http:/sites.gatech.edu/cssb/FRAGSITE." @default.
- W3136158255 created "2021-03-29" @default.
- W3136158255 creator A5001243447 @default.
- W3136158255 creator A5010808261 @default.
- W3136158255 creator A5022257357 @default.
- W3136158255 date "2021-03-16" @default.
- W3136158255 modified "2023-10-14" @default.
- W3136158255 title "FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening" @default.
- W3136158255 cites W1678356000 @default.
- W3136158255 cites W1830364214 @default.
- W3136158255 cites W1966041739 @default.
- W3136158255 cites W1968319881 @default.
- W3136158255 cites W1974809008 @default.
- W3136158255 cites W1985588649 @default.
- W3136158255 cites W1990451437 @default.
- W3136158255 cites W1993492933 @default.
- W3136158255 cites W1998912666 @default.
- W3136158255 cites W2009358092 @default.
- W3136158255 cites W2014582878 @default.
- W3136158255 cites W2015214828 @default.
- W3136158255 cites W2018082367 @default.
- W3136158255 cites W2018530279 @default.
- W3136158255 cites W2027065525 @default.
- W3136158255 cites W2029087609 @default.
- W3136158255 cites W2040526588 @default.
- W3136158255 cites W2041822719 @default.
- W3136158255 cites W2042572511 @default.
- W3136158255 cites W2047132220 @default.
- W3136158255 cites W2053012672 @default.
- W3136158255 cites W2055625952 @default.
- W3136158255 cites W2058418533 @default.
- W3136158255 cites W2059457452 @default.
- W3136158255 cites W2070268560 @default.
- W3136158255 cites W2079331631 @default.
- W3136158255 cites W2083144176 @default.
- W3136158255 cites W2083339697 @default.
- W3136158255 cites W2085039483 @default.
- W3136158255 cites W2096541451 @default.
- W3136158255 cites W2100436540 @default.
- W3136158255 cites W2101205238 @default.
- W3136158255 cites W2103300124 @default.
- W3136158255 cites W2103540182 @default.
- W3136158255 cites W2117620409 @default.
- W3136158255 cites W2119126379 @default.
- W3136158255 cites W2126427549 @default.
- W3136158255 cites W2127760066 @default.
- W3136158255 cites W2134967712 @default.
- W3136158255 cites W2137656352 @default.
- W3136158255 cites W2144258433 @default.
- W3136158255 cites W2144477832 @default.
- W3136158255 cites W2148512505 @default.
- W3136158255 cites W2154662590 @default.
- W3136158255 cites W2159887157 @default.
- W3136158255 cites W2160114756 @default.
- W3136158255 cites W2161151688 @default.
- W3136158255 cites W2162011385 @default.
- W3136158255 cites W2162220273 @default.
- W3136158255 cites W2166103367 @default.
- W3136158255 cites W2169678694 @default.
- W3136158255 cites W2170146596 @default.
- W3136158255 cites W2414367973 @default.
- W3136158255 cites W2608559058 @default.
- W3136158255 cites W2609912642 @default.
- W3136158255 cites W2789533197 @default.
- W3136158255 cites W2809343981 @default.
- W3136158255 cites W2894906875 @default.
- W3136158255 cites W2899070097 @default.
- W3136158255 cites W2904166099 @default.
- W3136158255 cites W2944959599 @default.
- W3136158255 cites W2950403611 @default.
- W3136158255 cites W2969325194 @default.
- W3136158255 cites W3004731690 @default.
- W3136158255 cites W3015291668 @default.
- W3136158255 cites W3015572666 @default.
- W3136158255 cites W3043660595 @default.
- W3136158255 cites W3104705366 @default.
- W3136158255 cites W4250454292 @default.
- W3136158255 doi "https://doi.org/10.1021/acs.jcim.0c01160" @default.
- W3136158255 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8243409" @default.
- W3136158255 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33724022" @default.
- W3136158255 hasPublicationYear "2021" @default.
- W3136158255 type Work @default.
- W3136158255 sameAs 3136158255 @default.
- W3136158255 citedByCount "17" @default.
- W3136158255 countsByYear W31361582552021 @default.
- W3136158255 countsByYear W31361582552022 @default.
- W3136158255 countsByYear W31361582552023 @default.
- W3136158255 crossrefType "journal-article" @default.
- W3136158255 hasAuthorship W3136158255A5001243447 @default.
- W3136158255 hasAuthorship W3136158255A5010808261 @default.
- W3136158255 hasAuthorship W3136158255A5022257357 @default.
- W3136158255 hasBestOaLocation W31361582552 @default.
- W3136158255 hasConcept C103278499 @default.
- W3136158255 hasConcept C103697762 @default.
- W3136158255 hasConcept C11413529 @default.
- W3136158255 hasConcept C115961682 @default.
- W3136158255 hasConcept C116569031 @default.
- W3136158255 hasConcept C139489369 @default.