Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136159612> ?p ?o ?g. }
- W3136159612 endingPage "109487" @default.
- W3136159612 startingPage "109487" @default.
- W3136159612 abstract "1. Open-source biodiversity databases contain a large number of species occurrence records but are often spatially biased; which affects the reliability of species distribution models based on these records. Sample bias correction techniques require data filtering which comes at the cost of record numbers, or require considerable additional sampling effort. Since independent data is rarely available, assessment of the correction technique often relies solely on performance metrics computed using subsets of the available – biased – data, which may prove misleading. 2. Here, we assess the extent to which an acknowledged sample bias correction technique is likely to improve models’ ability to predict species distributions in the absence of independent data. We assessed variation in model predictions induced by the aforementioned correction and model stochasticity; the variability between model replicates related to a random component (pseudo-absences sets and cross-validation subsets). We present, then, an index of the effect of correction relative to model stochasticity; the Relative Overlap Index (ROI). We investigated whether the ROI better represented the effect of correction than classic performance metrics (Boyce index, cAUC, AUC and TSS) and absolute overlap metrics (Schoener’s D, Pearson’s and Spearman’s correlation coefficients) when considering data related to 64 vertebrate species and 21 virtual species with a generated sample bias. 3. When based on absolute overlaps and cross-validation performance metrics, we found that correction produced no significant effects. When considering its effect relative to model stochasticity, the effect of correction was strong for most species at one of the three sites. The use of virtual species enabled us to verify that the correction technique improved both distribution predictions and the biological relevance of the selected variables at the specific site, when these were not correlated with sample bias patterns. 4. In the absence of additional independent data, the assessment of sample bias correction based on subsample data may be misleading. We propose to investigate both the biological relevance of environmental variables selected, and, the effect of sample bias correction based on its effect relative to model stochasticity." @default.
- W3136159612 created "2021-03-29" @default.
- W3136159612 creator A5022018158 @default.
- W3136159612 creator A5026372553 @default.
- W3136159612 creator A5029908055 @default.
- W3136159612 creator A5038031882 @default.
- W3136159612 creator A5045504736 @default.
- W3136159612 creator A5046142330 @default.
- W3136159612 creator A5049174875 @default.
- W3136159612 creator A5057047035 @default.
- W3136159612 creator A5067782095 @default.
- W3136159612 creator A5075088511 @default.
- W3136159612 creator A5081790716 @default.
- W3136159612 date "2022-12-01" @default.
- W3136159612 modified "2023-10-12" @default.
- W3136159612 title "Assessing the effect of sample bias correction in species distribution models" @default.
- W3136159612 cites W1507800548 @default.
- W3136159612 cites W1526319989 @default.
- W3136159612 cites W1572253537 @default.
- W3136159612 cites W1597804721 @default.
- W3136159612 cites W1602238219 @default.
- W3136159612 cites W1847811580 @default.
- W3136159612 cites W1931387816 @default.
- W3136159612 cites W1966943589 @default.
- W3136159612 cites W1969711924 @default.
- W3136159612 cites W1980193681 @default.
- W3136159612 cites W1983630695 @default.
- W3136159612 cites W1997972957 @default.
- W3136159612 cites W2002758482 @default.
- W3136159612 cites W2004560391 @default.
- W3136159612 cites W2006055706 @default.
- W3136159612 cites W2010938260 @default.
- W3136159612 cites W2020705682 @default.
- W3136159612 cites W2024570981 @default.
- W3136159612 cites W2033956075 @default.
- W3136159612 cites W2034795975 @default.
- W3136159612 cites W2040247202 @default.
- W3136159612 cites W2043602373 @default.
- W3136159612 cites W2045451950 @default.
- W3136159612 cites W2052583540 @default.
- W3136159612 cites W2055764609 @default.
- W3136159612 cites W2063014256 @default.
- W3136159612 cites W2074223804 @default.
- W3136159612 cites W2081334206 @default.
- W3136159612 cites W2098970432 @default.
- W3136159612 cites W2105663391 @default.
- W3136159612 cites W2106565253 @default.
- W3136159612 cites W2109735604 @default.
- W3136159612 cites W2119202692 @default.
- W3136159612 cites W2123402141 @default.
- W3136159612 cites W2128827287 @default.
- W3136159612 cites W2140534668 @default.
- W3136159612 cites W2144346238 @default.
- W3136159612 cites W2147618390 @default.
- W3136159612 cites W2154160829 @default.
- W3136159612 cites W2156250512 @default.
- W3136159612 cites W2168997286 @default.
- W3136159612 cites W2306488032 @default.
- W3136159612 cites W2464943030 @default.
- W3136159612 cites W2468006349 @default.
- W3136159612 cites W2512741782 @default.
- W3136159612 cites W2552708329 @default.
- W3136159612 cites W2588594737 @default.
- W3136159612 cites W2606554433 @default.
- W3136159612 cites W2768030593 @default.
- W3136159612 cites W2769311935 @default.
- W3136159612 cites W2777842083 @default.
- W3136159612 cites W2811086713 @default.
- W3136159612 cites W2832707927 @default.
- W3136159612 cites W2910713426 @default.
- W3136159612 cites W2912766985 @default.
- W3136159612 cites W2918981042 @default.
- W3136159612 cites W2941774662 @default.
- W3136159612 cites W2945293223 @default.
- W3136159612 cites W2948759342 @default.
- W3136159612 cites W2952139319 @default.
- W3136159612 cites W3009615301 @default.
- W3136159612 cites W3028981666 @default.
- W3136159612 cites W3082926213 @default.
- W3136159612 cites W3119006290 @default.
- W3136159612 cites W3136231588 @default.
- W3136159612 cites W3149815237 @default.
- W3136159612 cites W4214631587 @default.
- W3136159612 cites W608864583 @default.
- W3136159612 doi "https://doi.org/10.1016/j.ecolind.2022.109487" @default.
- W3136159612 hasPublicationYear "2022" @default.
- W3136159612 type Work @default.
- W3136159612 sameAs 3136159612 @default.
- W3136159612 citedByCount "15" @default.
- W3136159612 countsByYear W31361596122021 @default.
- W3136159612 countsByYear W31361596122022 @default.
- W3136159612 countsByYear W31361596122023 @default.
- W3136159612 crossrefType "journal-article" @default.
- W3136159612 hasAuthorship W3136159612A5022018158 @default.
- W3136159612 hasAuthorship W3136159612A5026372553 @default.
- W3136159612 hasAuthorship W3136159612A5029908055 @default.
- W3136159612 hasAuthorship W3136159612A5038031882 @default.
- W3136159612 hasAuthorship W3136159612A5045504736 @default.