Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136161696> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3136161696 abstract "The work presented in this thesis is focused on quantum computing and in particular on the interplay between quantum devices and machine learning. This interaction gives birth to a relatively recent area of study, called Quantum Machine Learning (QML), which currently represents a hot research field. This work was carried out in collaboration with an important company with home in Turin, DATA Reply S.r.l., whose main focuses are Big Data, Artificial Intelligence, Machine Learning and Quantum Computing. We start by introducing the fundamental concepts of quantum mechanics, presenting the topic in a formal way from a mathematical point of view while keeping things as simple as possible, as long as they allow us to understand quantum computing basics. After an overview on motivations, possible employments of quantum devices and an analysis of risks and benefits of their development, we proceed to explain quantum computing main concepts, such as qubits and quantum gates. The introduced formalism is the so-called Discrete Variable (DV) formalism, which is the most prominent choice in literature for describing quantum systems. However, as extensively explained during the course of this work, this approach presents several drawbacks: one of the main goals of this thesis is to introduce the alternative formalism of Continuous Variables (CV) and investigate how it can contribute to improve this research area. Currently, one of the preferred tools for quantum machine learning algorithms are the Variational - or Parametrized - circuits: they allow to train the quantum devices in the same way as a classical neural network and allow to address ML problems, both supervised and unsupervised. After a detailed description of these tools, we proceed to introduce PennyLane, a Python library for QML which is very well suited for dealing with variational circuits. In the core part of this work, we concentrate on some QML examples, in particular we analyze some applications in which using the CV formalism turns out to be the most convenient choice. Integration, more specifically Monte Carlo integration, is one of those fields which the CV formalism suits best; in a similar way, Gaussian process regression in its continuous variables version provides a great advantage, namely an exponential speedup, as long as some hypothesis are satisfied. We only provide a brief overview of these applications, since we opted to leave more room to experiments involving variational classifiers and quantum neural networks. Three use cases are analyzed, all involving the CV formalism. The first one is a variational classifier, employed in a supervised setting for the classification of a simple dataset. The second one is a quantum neural network, used to solve a problem of function fitting. The results and the chosen hyperparameters are presented, together with a formal explanation of the theoretical concepts behind them. The last use case, the most complex and detailed one, focuses on a time series forecasting task, carried out with a quantum neural network, and also presents a comparison with the classical approach." @default.
- W3136161696 created "2021-03-29" @default.
- W3136161696 creator A5078735303 @default.
- W3136161696 date "2020-10-06" @default.
- W3136161696 modified "2023-09-27" @default.
- W3136161696 title "Quantum Machine Learning: continuous-variable approach with application to Neural Networks" @default.
- W3136161696 hasPublicationYear "2020" @default.
- W3136161696 type Work @default.
- W3136161696 sameAs 3136161696 @default.
- W3136161696 citedByCount "0" @default.
- W3136161696 crossrefType "journal-article" @default.
- W3136161696 hasAuthorship W3136161696A5078735303 @default.
- W3136161696 hasConcept C121040770 @default.
- W3136161696 hasConcept C121332964 @default.
- W3136161696 hasConcept C137019171 @default.
- W3136161696 hasConcept C142362112 @default.
- W3136161696 hasConcept C153349607 @default.
- W3136161696 hasConcept C154945302 @default.
- W3136161696 hasConcept C169699857 @default.
- W3136161696 hasConcept C186468114 @default.
- W3136161696 hasConcept C203087015 @default.
- W3136161696 hasConcept C2779094486 @default.
- W3136161696 hasConcept C41008148 @default.
- W3136161696 hasConcept C5320026 @default.
- W3136161696 hasConcept C558565934 @default.
- W3136161696 hasConcept C58053490 @default.
- W3136161696 hasConcept C62520636 @default.
- W3136161696 hasConcept C73301696 @default.
- W3136161696 hasConcept C80444323 @default.
- W3136161696 hasConcept C84114770 @default.
- W3136161696 hasConceptScore W3136161696C121040770 @default.
- W3136161696 hasConceptScore W3136161696C121332964 @default.
- W3136161696 hasConceptScore W3136161696C137019171 @default.
- W3136161696 hasConceptScore W3136161696C142362112 @default.
- W3136161696 hasConceptScore W3136161696C153349607 @default.
- W3136161696 hasConceptScore W3136161696C154945302 @default.
- W3136161696 hasConceptScore W3136161696C169699857 @default.
- W3136161696 hasConceptScore W3136161696C186468114 @default.
- W3136161696 hasConceptScore W3136161696C203087015 @default.
- W3136161696 hasConceptScore W3136161696C2779094486 @default.
- W3136161696 hasConceptScore W3136161696C41008148 @default.
- W3136161696 hasConceptScore W3136161696C5320026 @default.
- W3136161696 hasConceptScore W3136161696C558565934 @default.
- W3136161696 hasConceptScore W3136161696C58053490 @default.
- W3136161696 hasConceptScore W3136161696C62520636 @default.
- W3136161696 hasConceptScore W3136161696C73301696 @default.
- W3136161696 hasConceptScore W3136161696C80444323 @default.
- W3136161696 hasConceptScore W3136161696C84114770 @default.
- W3136161696 hasLocation W31361616961 @default.
- W3136161696 hasOpenAccess W3136161696 @default.
- W3136161696 hasPrimaryLocation W31361616961 @default.
- W3136161696 hasRelatedWork W2798882397 @default.
- W3136161696 hasRelatedWork W2888777929 @default.
- W3136161696 hasRelatedWork W2888945283 @default.
- W3136161696 hasRelatedWork W2889191900 @default.
- W3136161696 hasRelatedWork W2913472259 @default.
- W3136161696 hasRelatedWork W2955565695 @default.
- W3136161696 hasRelatedWork W2955932731 @default.
- W3136161696 hasRelatedWork W2994307986 @default.
- W3136161696 hasRelatedWork W3010243192 @default.
- W3136161696 hasRelatedWork W3022026918 @default.
- W3136161696 hasRelatedWork W3036139965 @default.
- W3136161696 hasRelatedWork W3041746144 @default.
- W3136161696 hasRelatedWork W3129458892 @default.
- W3136161696 hasRelatedWork W3138065051 @default.
- W3136161696 hasRelatedWork W3154850693 @default.
- W3136161696 hasRelatedWork W3163277323 @default.
- W3136161696 hasRelatedWork W3200471257 @default.
- W3136161696 hasRelatedWork W3201320135 @default.
- W3136161696 hasRelatedWork W3205058257 @default.
- W3136161696 hasRelatedWork W3211888258 @default.
- W3136161696 isParatext "false" @default.
- W3136161696 isRetracted "false" @default.
- W3136161696 magId "3136161696" @default.
- W3136161696 workType "article" @default.