Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136169982> ?p ?o ?g. }
- W3136169982 endingPage "2762" @default.
- W3136169982 startingPage "2735" @default.
- W3136169982 abstract "Stochastic nature of load demand has a great impact on the performance of electrical power system. As a result, planning of electrical power system considering load uncertainties became inevitable. This paper presents Monte Carlo simulation based different bio-inspired algorithms, grey wolf optimization (GWO), manta ray foraging optimization (MRFO), satin bower bird optimization (SBO) and whale optimization (WOA) to optimize locations of three DG units under load uncertainties considering 500 scenarios. Each scenario includes 50 iterations which means that for each run we have 25,000 iterations and 500 characteristics for different load value. Two objectives are achieved. Firstly, statistically finding the optimal probabilistic location of three DG units under load uncertainties in IEEE 33-bus and IEEE 69-bus radial distribution system based on Monte Carlo simulation integrated with different bio-inspired algorithms. Secondly, comparing between the performances of four different bio-inspired algorithms. Three objective functions are considered, minimizing active power loss, minimizing voltage deviation and maximizing voltage stability index. The active and reactive power demand are normally distributed using normal distribution function. The optimal probabilistic location is investigated considering two cases under load uncertainties, optimizing location of three DG units generally and optimizing location of one DG unit assuming two optimum locations for the other two units extracted from case I. The obtained results (after placing DG units) are compared to the base case (DG units are not connected) and compared to each other according to the optimization technique. The results show that, SBO algorithm superiors other algorithms almost in all cases. Comes next GWO which provide good results generally. However, the good performance obtained by MRFO, it consumes twice the time of other algorithms. WOA however fast convergence, it provides results worse than other algorithms. The system is applied to the well-known IEEE 33-bus and IEEE 69-bus radial distribution system." @default.
- W3136169982 created "2021-03-29" @default.
- W3136169982 creator A5016118727 @default.
- W3136169982 creator A5027722128 @default.
- W3136169982 creator A5028850658 @default.
- W3136169982 creator A5031030325 @default.
- W3136169982 creator A5065175204 @default.
- W3136169982 creator A5084306484 @default.
- W3136169982 date "2021-09-01" @default.
- W3136169982 modified "2023-09-29" @default.
- W3136169982 title "Optimal probabilistic location of DGs using Monte Carlo simulation based different bio-inspired algorithms" @default.
- W3136169982 cites W1998769260 @default.
- W3136169982 cites W2061438946 @default.
- W3136169982 cites W2124895057 @default.
- W3136169982 cites W2146649024 @default.
- W3136169982 cites W2231928583 @default.
- W3136169982 cites W2290883490 @default.
- W3136169982 cites W2342845337 @default.
- W3136169982 cites W2347054452 @default.
- W3136169982 cites W2528180509 @default.
- W3136169982 cites W2544935476 @default.
- W3136169982 cites W2566611748 @default.
- W3136169982 cites W2571820952 @default.
- W3136169982 cites W2594390867 @default.
- W3136169982 cites W2612473079 @default.
- W3136169982 cites W2778109384 @default.
- W3136169982 cites W2783491213 @default.
- W3136169982 cites W2783979293 @default.
- W3136169982 cites W2787177314 @default.
- W3136169982 cites W2791118316 @default.
- W3136169982 cites W2793003691 @default.
- W3136169982 cites W2798187076 @default.
- W3136169982 cites W2804450416 @default.
- W3136169982 cites W2809276846 @default.
- W3136169982 cites W2810245320 @default.
- W3136169982 cites W2884899745 @default.
- W3136169982 cites W2885629516 @default.
- W3136169982 cites W2885863973 @default.
- W3136169982 cites W2894118109 @default.
- W3136169982 cites W2894817900 @default.
- W3136169982 cites W2901273228 @default.
- W3136169982 cites W2901295591 @default.
- W3136169982 cites W2912573132 @default.
- W3136169982 cites W2913704436 @default.
- W3136169982 cites W2915294893 @default.
- W3136169982 cites W2915818317 @default.
- W3136169982 cites W2915822632 @default.
- W3136169982 cites W2917859040 @default.
- W3136169982 cites W2918071025 @default.
- W3136169982 cites W2922810479 @default.
- W3136169982 cites W2975106982 @default.
- W3136169982 cites W2982250499 @default.
- W3136169982 cites W2982453621 @default.
- W3136169982 cites W2990647750 @default.
- W3136169982 cites W2998201699 @default.
- W3136169982 cites W2998950070 @default.
- W3136169982 cites W2999925133 @default.
- W3136169982 cites W3014917440 @default.
- W3136169982 cites W3027640385 @default.
- W3136169982 cites W3042365161 @default.
- W3136169982 cites W4250503711 @default.
- W3136169982 doi "https://doi.org/10.1016/j.asej.2021.02.007" @default.
- W3136169982 hasPublicationYear "2021" @default.
- W3136169982 type Work @default.
- W3136169982 sameAs 3136169982 @default.
- W3136169982 citedByCount "14" @default.
- W3136169982 countsByYear W31361699822021 @default.
- W3136169982 countsByYear W31361699822022 @default.
- W3136169982 countsByYear W31361699822023 @default.
- W3136169982 crossrefType "journal-article" @default.
- W3136169982 hasAuthorship W3136169982A5016118727 @default.
- W3136169982 hasAuthorship W3136169982A5027722128 @default.
- W3136169982 hasAuthorship W3136169982A5028850658 @default.
- W3136169982 hasAuthorship W3136169982A5031030325 @default.
- W3136169982 hasAuthorship W3136169982A5065175204 @default.
- W3136169982 hasAuthorship W3136169982A5084306484 @default.
- W3136169982 hasBestOaLocation W31361699821 @default.
- W3136169982 hasConcept C105795698 @default.
- W3136169982 hasConcept C108755667 @default.
- W3136169982 hasConcept C11413529 @default.
- W3136169982 hasConcept C119599485 @default.
- W3136169982 hasConcept C121332964 @default.
- W3136169982 hasConcept C126255220 @default.
- W3136169982 hasConcept C127413603 @default.
- W3136169982 hasConcept C154945302 @default.
- W3136169982 hasConcept C163258240 @default.
- W3136169982 hasConcept C165801399 @default.
- W3136169982 hasConcept C19499675 @default.
- W3136169982 hasConcept C33923547 @default.
- W3136169982 hasConcept C41008148 @default.
- W3136169982 hasConcept C49937458 @default.
- W3136169982 hasConcept C62520636 @default.
- W3136169982 hasConcept C89227174 @default.
- W3136169982 hasConceptScore W3136169982C105795698 @default.
- W3136169982 hasConceptScore W3136169982C108755667 @default.
- W3136169982 hasConceptScore W3136169982C11413529 @default.
- W3136169982 hasConceptScore W3136169982C119599485 @default.
- W3136169982 hasConceptScore W3136169982C121332964 @default.