Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136172189> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3136172189 endingPage "012044" @default.
- W3136172189 startingPage "012044" @default.
- W3136172189 abstract "Abstract Regression analysis is a statistical analysis used to determine the pattern of relationships between predictor variables and response variables. There are two models of estimation approaches in regression analysis, namely parametric regression, and nonparametric regression. The parametric regression approach is used in the shape of the regression curve is known. In cases with unknown relationship patterns, the development is done using nonparametric regression. Nonparametric regression is a model estimation method which is based on an approach that is not bound by certain assumptions of the regression curve shape. Nonparametric regression varies greatly with variable curves that are different between one predictor variable with another predictor variable. In nonparametric regression, there are several types of the recommended kernel, spline, and Fourier series. In many cases, however, these conservative nonparametric regression methods cannot handle more complex problems. Mixture methods by combining several methods such as a mixture of spline and Fourier series, kernel and Fourier series, and so on, give a better result. This study aims to obtain estimates of a mixture of a truncated spline, kernel, and Fourier series by using the Ordinary Least Square (OLS) method and obtain methods for selecting knots, bandwidth, and optimal oscillation parameters with the smallest GCV. The results of this study are the formulation of a mixed estimation model of the truncated spline, kernel, and Fourier series and the smallest GCV formula to obtain the optimum location and number of points of knots, bandwidth, and oscillations." @default.
- W3136172189 created "2021-03-29" @default.
- W3136172189 creator A5006845773 @default.
- W3136172189 creator A5012999018 @default.
- W3136172189 creator A5041113272 @default.
- W3136172189 date "2021-03-01" @default.
- W3136172189 modified "2023-10-18" @default.
- W3136172189 title "Mixture Model Nonparametric Regression and Its Application" @default.
- W3136172189 cites W1510444525 @default.
- W3136172189 cites W2024658605 @default.
- W3136172189 cites W2518687982 @default.
- W3136172189 cites W2518746725 @default.
- W3136172189 cites W2623228024 @default.
- W3136172189 cites W2924584548 @default.
- W3136172189 cites W2940498231 @default.
- W3136172189 doi "https://doi.org/10.1088/1742-6596/1842/1/012044" @default.
- W3136172189 hasPublicationYear "2021" @default.
- W3136172189 type Work @default.
- W3136172189 sameAs 3136172189 @default.
- W3136172189 citedByCount "2" @default.
- W3136172189 countsByYear W31361721892023 @default.
- W3136172189 crossrefType "journal-article" @default.
- W3136172189 hasAuthorship W3136172189A5006845773 @default.
- W3136172189 hasAuthorship W3136172189A5012999018 @default.
- W3136172189 hasAuthorship W3136172189A5041113272 @default.
- W3136172189 hasBestOaLocation W31361721891 @default.
- W3136172189 hasConcept C102366305 @default.
- W3136172189 hasConcept C10390562 @default.
- W3136172189 hasConcept C105795698 @default.
- W3136172189 hasConcept C114614502 @default.
- W3136172189 hasConcept C117251300 @default.
- W3136172189 hasConcept C120068334 @default.
- W3136172189 hasConcept C127413603 @default.
- W3136172189 hasConcept C134306372 @default.
- W3136172189 hasConcept C152877465 @default.
- W3136172189 hasConcept C19539793 @default.
- W3136172189 hasConcept C200695384 @default.
- W3136172189 hasConcept C207864730 @default.
- W3136172189 hasConcept C33923547 @default.
- W3136172189 hasConcept C66938386 @default.
- W3136172189 hasConcept C74127309 @default.
- W3136172189 hasConcept C74193536 @default.
- W3136172189 hasConcept C83546350 @default.
- W3136172189 hasConceptScore W3136172189C102366305 @default.
- W3136172189 hasConceptScore W3136172189C10390562 @default.
- W3136172189 hasConceptScore W3136172189C105795698 @default.
- W3136172189 hasConceptScore W3136172189C114614502 @default.
- W3136172189 hasConceptScore W3136172189C117251300 @default.
- W3136172189 hasConceptScore W3136172189C120068334 @default.
- W3136172189 hasConceptScore W3136172189C127413603 @default.
- W3136172189 hasConceptScore W3136172189C134306372 @default.
- W3136172189 hasConceptScore W3136172189C152877465 @default.
- W3136172189 hasConceptScore W3136172189C19539793 @default.
- W3136172189 hasConceptScore W3136172189C200695384 @default.
- W3136172189 hasConceptScore W3136172189C207864730 @default.
- W3136172189 hasConceptScore W3136172189C33923547 @default.
- W3136172189 hasConceptScore W3136172189C66938386 @default.
- W3136172189 hasConceptScore W3136172189C74127309 @default.
- W3136172189 hasConceptScore W3136172189C74193536 @default.
- W3136172189 hasConceptScore W3136172189C83546350 @default.
- W3136172189 hasIssue "1" @default.
- W3136172189 hasLocation W31361721891 @default.
- W3136172189 hasOpenAccess W3136172189 @default.
- W3136172189 hasPrimaryLocation W31361721891 @default.
- W3136172189 hasRelatedWork W2088954041 @default.
- W3136172189 hasRelatedWork W2112005724 @default.
- W3136172189 hasRelatedWork W2159436900 @default.
- W3136172189 hasRelatedWork W2464909151 @default.
- W3136172189 hasRelatedWork W2949120947 @default.
- W3136172189 hasRelatedWork W3037292512 @default.
- W3136172189 hasRelatedWork W3135752419 @default.
- W3136172189 hasRelatedWork W3136172189 @default.
- W3136172189 hasRelatedWork W4324085364 @default.
- W3136172189 hasRelatedWork W4366769798 @default.
- W3136172189 hasVolume "1842" @default.
- W3136172189 isParatext "false" @default.
- W3136172189 isRetracted "false" @default.
- W3136172189 magId "3136172189" @default.
- W3136172189 workType "article" @default.