Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136176547> ?p ?o ?g. }
- W3136176547 endingPage "1429" @default.
- W3136176547 startingPage "1429" @default.
- W3136176547 abstract "Collective cell migration is a key feature of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) among many other cancers, yet the microenvironmental factors and underlying mechanisms that trigger collective migration remain poorly understood. Here, we investigated two microenvironmental factors, tumor-intrinsic hypoxia and tumor-secreted factors (secretome), as triggers of collective migration using three-dimensional (3D) discrete-sized microtumor models that recapitulate hallmarks of DCIS-IDC transition. Interestingly, the two factors induced two distinct modes of collective migration: directional and radial migration in the 3D microtumors generated from the same breast cancer cell line model, T47D. Without external stimulus, large (600 µm) T47D microtumors exhibited tumor-intrinsic hypoxia and directional migration, while small (150 µm), non-hypoxic microtumors exhibited radial migration only when exposed to the secretome of large microtumors. To investigate the mechanisms underlying hypoxia- and secretome-induced directional vs. radial migration modes, we performed differential gene expression analysis of hypoxia- and secretome-induced migratory microtumors compared with non-hypoxic, non-migratory small microtumors as controls. We propose unique gene signature sets related to tumor-intrinsic hypoxia, hypoxia-induced epithelial-mesenchymal transition (EMT), as well as hypoxia-induced directional migration and secretome-induced radial migration. Gene Set Enrichment Analysis (GSEA) and protein-protein interaction (PPI) network analysis revealed enrichment and potential interaction between hypoxia, EMT, and migration gene signatures for the hypoxia-induced directional migration. In contrast, hypoxia and EMT were not enriched in the secretome-induced radial migration, suggesting that complete EMT may not be required for radial migration. Survival analysis identified unique genes associated with low survival rate and poor prognosis in TCGA-breast invasive carcinoma dataset from our tumor-intrinsic hypoxia gene signature (CXCR4, FOXO3, LDH, NDRG1), hypoxia-induced EMT gene signature (EFEMP2, MGP), and directional migration gene signature (MAP3K3, PI3K3R3). NOS3 was common between hypoxia and migration gene signature. Survival analysis from secretome-induced radial migration identified ATM, KCNMA1 (hypoxia gene signature), and KLF4, IFITM1, EFNA1, TGFBR1 (migration gene signature) to be associated with poor survival rate. In conclusion, our unique 3D cultures with controlled microenvironments respond to different microenvironmental factors, tumor-intrinsic hypoxia, and secretome by adopting distinct collective migration modes and their gene expression analysis highlights the phenotypic heterogeneity and plasticity of epithelial cancer cells." @default.
- W3136176547 created "2021-03-29" @default.
- W3136176547 creator A5018747166 @default.
- W3136176547 creator A5029915129 @default.
- W3136176547 creator A5042570169 @default.
- W3136176547 creator A5051409103 @default.
- W3136176547 creator A5051485626 @default.
- W3136176547 creator A5072153228 @default.
- W3136176547 date "2021-03-20" @default.
- W3136176547 modified "2023-10-14" @default.
- W3136176547 title "Identifying Molecular Signatures of Distinct Modes of Collective Migration in Response to the Microenvironment Using Three-Dimensional Breast Cancer Models" @default.
- W3136176547 cites W1482226454 @default.
- W3136176547 cites W1534228102 @default.
- W3136176547 cites W1566831845 @default.
- W3136176547 cites W1658378492 @default.
- W3136176547 cites W1972220057 @default.
- W3136176547 cites W2010457001 @default.
- W3136176547 cites W2012034410 @default.
- W3136176547 cites W2012376126 @default.
- W3136176547 cites W2037915750 @default.
- W3136176547 cites W2040607104 @default.
- W3136176547 cites W2040854171 @default.
- W3136176547 cites W2043706386 @default.
- W3136176547 cites W2052685738 @default.
- W3136176547 cites W2058106994 @default.
- W3136176547 cites W2100840394 @default.
- W3136176547 cites W2101210666 @default.
- W3136176547 cites W2102741362 @default.
- W3136176547 cites W2105457070 @default.
- W3136176547 cites W2110139532 @default.
- W3136176547 cites W2112270062 @default.
- W3136176547 cites W2125257427 @default.
- W3136176547 cites W2130410032 @default.
- W3136176547 cites W2144656637 @default.
- W3136176547 cites W2156170799 @default.
- W3136176547 cites W2159675211 @default.
- W3136176547 cites W2161312917 @default.
- W3136176547 cites W2161619408 @default.
- W3136176547 cites W2214074259 @default.
- W3136176547 cites W2323751645 @default.
- W3136176547 cites W2329659234 @default.
- W3136176547 cites W2342488790 @default.
- W3136176547 cites W2403387548 @default.
- W3136176547 cites W2542576093 @default.
- W3136176547 cites W2547719815 @default.
- W3136176547 cites W2550960324 @default.
- W3136176547 cites W2600583400 @default.
- W3136176547 cites W2606980922 @default.
- W3136176547 cites W2607054467 @default.
- W3136176547 cites W2613629789 @default.
- W3136176547 cites W2739391947 @default.
- W3136176547 cites W2749613778 @default.
- W3136176547 cites W2755239853 @default.
- W3136176547 cites W2883962865 @default.
- W3136176547 cites W2922234633 @default.
- W3136176547 cites W2929596005 @default.
- W3136176547 cites W2941527610 @default.
- W3136176547 cites W2962145716 @default.
- W3136176547 cites W2966360743 @default.
- W3136176547 cites W2967213355 @default.
- W3136176547 cites W2986063395 @default.
- W3136176547 cites W2987284967 @default.
- W3136176547 cites W3009149445 @default.
- W3136176547 cites W3036677665 @default.
- W3136176547 cites W3082313328 @default.
- W3136176547 cites W3087016663 @default.
- W3136176547 cites W3087483079 @default.
- W3136176547 cites W576850159 @default.
- W3136176547 cites W904058290 @default.
- W3136176547 doi "https://doi.org/10.3390/cancers13061429" @default.
- W3136176547 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8004051" @default.
- W3136176547 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33804802" @default.
- W3136176547 hasPublicationYear "2021" @default.
- W3136176547 type Work @default.
- W3136176547 sameAs 3136176547 @default.
- W3136176547 citedByCount "5" @default.
- W3136176547 countsByYear W31361765472022 @default.
- W3136176547 countsByYear W31361765472023 @default.
- W3136176547 crossrefType "journal-article" @default.
- W3136176547 hasAuthorship W3136176547A5018747166 @default.
- W3136176547 hasAuthorship W3136176547A5029915129 @default.
- W3136176547 hasAuthorship W3136176547A5042570169 @default.
- W3136176547 hasAuthorship W3136176547A5051409103 @default.
- W3136176547 hasAuthorship W3136176547A5051485626 @default.
- W3136176547 hasAuthorship W3136176547A5072153228 @default.
- W3136176547 hasBestOaLocation W31361765471 @default.
- W3136176547 hasConcept C104317684 @default.
- W3136176547 hasConcept C127561419 @default.
- W3136176547 hasConcept C137738243 @default.
- W3136176547 hasConcept C1491633281 @default.
- W3136176547 hasConcept C178790620 @default.
- W3136176547 hasConcept C185592680 @default.
- W3136176547 hasConcept C2776107976 @default.
- W3136176547 hasConcept C3020616263 @default.
- W3136176547 hasConcept C502942594 @default.
- W3136176547 hasConcept C540031477 @default.
- W3136176547 hasConcept C54355233 @default.
- W3136176547 hasConcept C76419328 @default.