Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136178033> ?p ?o ?g. }
- W3136178033 endingPage "167885" @default.
- W3136178033 startingPage "167885" @default.
- W3136178033 abstract "A so-called smart material is a material that is the seat of one or more multiphysical coupling. One of the key points in the development of the constitutive laws of these materials, either at the local or at the global scale, is to formulate a free energy density (or enthalpy) from vectors, tensors, at a given order and for a class of given symmetry, depending on the symmetry classes of the crystal constituting the material or the symmetry of the representative volume element. This article takes as a support of study the stress and magnetization couple (σ,m) involved in the phenomena of magnetoelastic coupling in a cubic symmetry medium. Several studies indeed show a non-monotonic sensitivity of the magnetic susceptibility and magnetostriction of certain soft magnetic materials under stress. Modeling such a phenomenon requires the introduction of a second order stress term in the Gibbs free energy density. A polynomial formulation in the two variables stress and magnetization is preferred over a tensorial formulation. For a given material symmetry class, this allows to express more easily the free energy density at any bi-degree in σ and m (i.e. at any constitutive tensors order for the so-called tensorial formulation). A rigorous and systematic method is essential to obtain the high-degree magneto-mechanical coupling terms and to build a free energy density function at any order which is invariant by the action of the cubic (octahedral) group. For that aim, theoretical and computer tools in Invariant Theory, that allow for the mathematical description of cubic nonlinear magneto-elasticity, are introduced. Minimal integrity bases of the invariant algebra for the pair (m,σ), under the proper (orientation-preserving) and the full cubic groups, are then proposed. The minimal integrity basis for the proper cubic group is constituted of 60 invariants, while the minimal integrity basis for the full cubic group (the one of interest for magneto-elasticity) is made up of 30 invariants. These invariants are formulated in a (coordinate free) intrinsic manner, using a generalized cross product to write some of them. The counting of independent invariants of a given multi-degree in (m,σ) is performed. It is shown accordingly that it is possible to list without error all the material parameters useful for the description of the coupled magnetoelastic behavior from the integrity basis. The technique is applied to derive general expressions Ψ★(σ,m) of the free energy density at the magnetic domains scale exhibiting cubic symmetry. The classic results for an isotropic medium are recovered." @default.
- W3136178033 created "2021-03-29" @default.
- W3136178033 creator A5020480879 @default.
- W3136178033 creator A5025903971 @default.
- W3136178033 creator A5034041653 @default.
- W3136178033 creator A5058072311 @default.
- W3136178033 creator A5062506931 @default.
- W3136178033 date "2022-03-01" @default.
- W3136178033 modified "2023-10-17" @default.
- W3136178033 title "Integrity bases for cubic nonlinear magnetostriction" @default.
- W3136178033 cites W1581624903 @default.
- W3136178033 cites W191189772 @default.
- W3136178033 cites W1971798178 @default.
- W3136178033 cites W1978390935 @default.
- W3136178033 cites W1983383293 @default.
- W3136178033 cites W1985878559 @default.
- W3136178033 cites W2008675172 @default.
- W3136178033 cites W2023588455 @default.
- W3136178033 cites W2031578247 @default.
- W3136178033 cites W2039079733 @default.
- W3136178033 cites W2042743612 @default.
- W3136178033 cites W2044401940 @default.
- W3136178033 cites W2044521703 @default.
- W3136178033 cites W2045023532 @default.
- W3136178033 cites W2055106450 @default.
- W3136178033 cites W2062608175 @default.
- W3136178033 cites W2062951635 @default.
- W3136178033 cites W2069672797 @default.
- W3136178033 cites W2070659471 @default.
- W3136178033 cites W2076316679 @default.
- W3136178033 cites W2081867781 @default.
- W3136178033 cites W2084666333 @default.
- W3136178033 cites W2115096491 @default.
- W3136178033 cites W2140884533 @default.
- W3136178033 cites W2145424668 @default.
- W3136178033 cites W2162759781 @default.
- W3136178033 cites W2485378094 @default.
- W3136178033 cites W2612640872 @default.
- W3136178033 cites W2898159484 @default.
- W3136178033 cites W2908810711 @default.
- W3136178033 cites W2963777642 @default.
- W3136178033 cites W3044357801 @default.
- W3136178033 cites W3103588571 @default.
- W3136178033 cites W3162474989 @default.
- W3136178033 cites W4236623350 @default.
- W3136178033 cites W4293207255 @default.
- W3136178033 doi "https://doi.org/10.1016/j.jmmm.2021.167885" @default.
- W3136178033 hasPublicationYear "2022" @default.
- W3136178033 type Work @default.
- W3136178033 sameAs 3136178033 @default.
- W3136178033 citedByCount "2" @default.
- W3136178033 countsByYear W31361780332021 @default.
- W3136178033 crossrefType "journal-article" @default.
- W3136178033 hasAuthorship W3136178033A5020480879 @default.
- W3136178033 hasAuthorship W3136178033A5025903971 @default.
- W3136178033 hasAuthorship W3136178033A5034041653 @default.
- W3136178033 hasAuthorship W3136178033A5058072311 @default.
- W3136178033 hasAuthorship W3136178033A5062506931 @default.
- W3136178033 hasBestOaLocation W31361780332 @default.
- W3136178033 hasConcept C115260700 @default.
- W3136178033 hasConcept C121332964 @default.
- W3136178033 hasConcept C158622935 @default.
- W3136178033 hasConcept C192562407 @default.
- W3136178033 hasConcept C2524010 @default.
- W3136178033 hasConcept C26873012 @default.
- W3136178033 hasConcept C2779886137 @default.
- W3136178033 hasConcept C32546565 @default.
- W3136178033 hasConcept C33923547 @default.
- W3136178033 hasConcept C62520636 @default.
- W3136178033 hasConcept C72852350 @default.
- W3136178033 hasConcept C74650414 @default.
- W3136178033 hasConceptScore W3136178033C115260700 @default.
- W3136178033 hasConceptScore W3136178033C121332964 @default.
- W3136178033 hasConceptScore W3136178033C158622935 @default.
- W3136178033 hasConceptScore W3136178033C192562407 @default.
- W3136178033 hasConceptScore W3136178033C2524010 @default.
- W3136178033 hasConceptScore W3136178033C26873012 @default.
- W3136178033 hasConceptScore W3136178033C2779886137 @default.
- W3136178033 hasConceptScore W3136178033C32546565 @default.
- W3136178033 hasConceptScore W3136178033C33923547 @default.
- W3136178033 hasConceptScore W3136178033C62520636 @default.
- W3136178033 hasConceptScore W3136178033C72852350 @default.
- W3136178033 hasConceptScore W3136178033C74650414 @default.
- W3136178033 hasLocation W31361780331 @default.
- W3136178033 hasLocation W31361780332 @default.
- W3136178033 hasLocation W31361780333 @default.
- W3136178033 hasLocation W31361780334 @default.
- W3136178033 hasLocation W31361780335 @default.
- W3136178033 hasLocation W31361780336 @default.
- W3136178033 hasOpenAccess W3136178033 @default.
- W3136178033 hasPrimaryLocation W31361780331 @default.
- W3136178033 hasRelatedWork W1976438921 @default.
- W3136178033 hasRelatedWork W2001814846 @default.
- W3136178033 hasRelatedWork W2004144225 @default.
- W3136178033 hasRelatedWork W2016813771 @default.
- W3136178033 hasRelatedWork W2024342624 @default.
- W3136178033 hasRelatedWork W2070724881 @default.
- W3136178033 hasRelatedWork W2330894353 @default.