Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136178184> ?p ?o ?g. }
- W3136178184 endingPage "106085" @default.
- W3136178184 startingPage "106085" @default.
- W3136178184 abstract "The frequent crash occurrences have caused massive loss of lives and properties all over the world. In order to improve traffic safety, it is vital to understand the relationships between traffic operation conditions and crash risk, and further implement safety countermeasures. Emerging studies have conducted the crash risk analyses using discrete and aggregated traffic data (e.g., loop detector data, probe vehicle data), where crash events were selected as the prediction target. However, traditional traffic sensing data obtained at segment level cannot describe the detailed operation conditions for the vehicle platoons near crash locations. Thus, more microscopic and high-resolution traffic sensing data are needed. In addition, considering the random occurrence feature of crashes, high-risk events should be paid more attentions given their higher occurrence probability and consistent causations with crashes, which could proactively reduce crash likelihood. In this study, HighD Dataset from German highways was utilized for the empirical analyses. First, high-risk events were obtained using safety surrogate measures with Modified Time to Collision (MTTC) less than 2 s. Traffic operation characteristics within 5 s prior to event occurrence were extracted based on vehicle trajectory data. Then, a total of three different logistic regression models were established, which are standard logistic regression model, random-effects logistic regression (RELR) model, and random-parameter logistic regression (RPLR) model. Among which, the RPLR model was showed to have the best fitness and prediction accuracy. The results showed that the disturbed traffic flows in both longitudinal and lateral directions have positive impacts on high-risk events occurrence. Besides, too close following distance between vehicles would lead to high-risk events. Moreover, RPLR models could provide a high prediction accuracy of 97 % for 2 s ahead of the high-risk events. Finally, potential safety improvement countermeasures and future application scenarios were also discussed." @default.
- W3136178184 created "2021-03-29" @default.
- W3136178184 creator A5002323402 @default.
- W3136178184 creator A5003759585 @default.
- W3136178184 creator A5048438271 @default.
- W3136178184 date "2021-05-01" @default.
- W3136178184 modified "2023-10-02" @default.
- W3136178184 title "Trajectory data based freeway high-risk events prediction and its influencing factors analyses" @default.
- W3136178184 cites W1968718569 @default.
- W3136178184 cites W1993292974 @default.
- W3136178184 cites W1999845506 @default.
- W3136178184 cites W2015039368 @default.
- W3136178184 cites W2016840500 @default.
- W3136178184 cites W2022714541 @default.
- W3136178184 cites W2039357427 @default.
- W3136178184 cites W2046017949 @default.
- W3136178184 cites W2054541664 @default.
- W3136178184 cites W2068362834 @default.
- W3136178184 cites W2070463402 @default.
- W3136178184 cites W2073177254 @default.
- W3136178184 cites W2074669159 @default.
- W3136178184 cites W2089487090 @default.
- W3136178184 cites W2101952144 @default.
- W3136178184 cites W2104349879 @default.
- W3136178184 cites W2135453947 @default.
- W3136178184 cites W2150671137 @default.
- W3136178184 cites W2154373748 @default.
- W3136178184 cites W2192586580 @default.
- W3136178184 cites W2197013543 @default.
- W3136178184 cites W2203247364 @default.
- W3136178184 cites W2508167742 @default.
- W3136178184 cites W2601598680 @default.
- W3136178184 cites W2913766863 @default.
- W3136178184 cites W2925648085 @default.
- W3136178184 cites W2972984539 @default.
- W3136178184 cites W2978345223 @default.
- W3136178184 cites W3016229397 @default.
- W3136178184 cites W3048065666 @default.
- W3136178184 doi "https://doi.org/10.1016/j.aap.2021.106085" @default.
- W3136178184 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33773199" @default.
- W3136178184 hasPublicationYear "2021" @default.
- W3136178184 type Work @default.
- W3136178184 sameAs 3136178184 @default.
- W3136178184 citedByCount "21" @default.
- W3136178184 countsByYear W31361781842021 @default.
- W3136178184 countsByYear W31361781842022 @default.
- W3136178184 countsByYear W31361781842023 @default.
- W3136178184 crossrefType "journal-article" @default.
- W3136178184 hasAuthorship W3136178184A5002323402 @default.
- W3136178184 hasAuthorship W3136178184A5003759585 @default.
- W3136178184 hasAuthorship W3136178184A5048438271 @default.
- W3136178184 hasConcept C105795698 @default.
- W3136178184 hasConcept C121332964 @default.
- W3136178184 hasConcept C121704057 @default.
- W3136178184 hasConcept C127413603 @default.
- W3136178184 hasConcept C1276947 @default.
- W3136178184 hasConcept C13662910 @default.
- W3136178184 hasConcept C151956035 @default.
- W3136178184 hasConcept C183469790 @default.
- W3136178184 hasConcept C199360897 @default.
- W3136178184 hasConcept C3017944768 @default.
- W3136178184 hasConcept C33923547 @default.
- W3136178184 hasConcept C38652104 @default.
- W3136178184 hasConcept C41008148 @default.
- W3136178184 hasConcept C71924100 @default.
- W3136178184 hasConcept C99454951 @default.
- W3136178184 hasConceptScore W3136178184C105795698 @default.
- W3136178184 hasConceptScore W3136178184C121332964 @default.
- W3136178184 hasConceptScore W3136178184C121704057 @default.
- W3136178184 hasConceptScore W3136178184C127413603 @default.
- W3136178184 hasConceptScore W3136178184C1276947 @default.
- W3136178184 hasConceptScore W3136178184C13662910 @default.
- W3136178184 hasConceptScore W3136178184C151956035 @default.
- W3136178184 hasConceptScore W3136178184C183469790 @default.
- W3136178184 hasConceptScore W3136178184C199360897 @default.
- W3136178184 hasConceptScore W3136178184C3017944768 @default.
- W3136178184 hasConceptScore W3136178184C33923547 @default.
- W3136178184 hasConceptScore W3136178184C38652104 @default.
- W3136178184 hasConceptScore W3136178184C41008148 @default.
- W3136178184 hasConceptScore W3136178184C71924100 @default.
- W3136178184 hasConceptScore W3136178184C99454951 @default.
- W3136178184 hasFunder F4320321001 @default.
- W3136178184 hasLocation W31361781841 @default.
- W3136178184 hasOpenAccess W3136178184 @default.
- W3136178184 hasPrimaryLocation W31361781841 @default.
- W3136178184 hasRelatedWork W1558985077 @default.
- W3136178184 hasRelatedWork W1975336593 @default.
- W3136178184 hasRelatedWork W1983796781 @default.
- W3136178184 hasRelatedWork W2037691914 @default.
- W3136178184 hasRelatedWork W2040418644 @default.
- W3136178184 hasRelatedWork W2162307303 @default.
- W3136178184 hasRelatedWork W2909829198 @default.
- W3136178184 hasRelatedWork W2987128581 @default.
- W3136178184 hasRelatedWork W3039717196 @default.
- W3136178184 hasRelatedWork W817408681 @default.
- W3136178184 hasVolume "154" @default.
- W3136178184 isParatext "false" @default.
- W3136178184 isRetracted "false" @default.