Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136180481> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3136180481 abstract "Abstract Interval calculus is a tool to evaluate a mathematical expression for ranges of values of its parameters. The basic mathematical operations are defined in the interval algebra. Neural networks is an approach leading to engineering expert systems that are capable of learning, self adapting to particular engineering applications and handling fuzzy and interval input information. In traditional machine learning, symbolic representations, such as first order predicate calculus, are used to represent knowledge. The resulting algorithms are specific to the selected representation and presume an ad-hoc knowledge of the system represented. In the neural network representation, knowledge is distributed to a large number of weighted synapses that facilitates learning by experience, realized through modification of the synapses weights according to a chosen learning rule. Traditional classification systems use binary logic. This assumes a clear distinction between two and only two possible states of an event. However, key elements in the human thinking are not numbers but labels of fuzzy sets, that is, classes of objects in which the transition from non-membership to membership is gradual rather than abrupt and ranges of key parameters involved. A heteroassociative neural network is used to map the existing knowledge and acquire new knowledge in learning sessions. The inputs can be binary, fuzzy and interval variables. To process the diagnosis in a back-propagation mode, interval calculus is utilized in algebraic and matrix operations and the diagnosis results in interval output parameters, the identification scores. Interval calculus was programmed in a software package to allow for interval computations. The package includes arithmetic, function and matrix operations. Available experience for failure diagnosis in turbomachinery was utilized to initially teach the system. Additional diagnoses from the author’s experience were taught to the system and additional features and diagnoses defined. Convergence of the procedure depends on the monotonicity of the functions used. For usual networks and threshold functions, convergence is warranted." @default.
- W3136180481 created "2021-03-29" @default.
- W3136180481 creator A5033050224 @default.
- W3136180481 date "1993-09-19" @default.
- W3136180481 modified "2023-09-27" @default.
- W3136180481 title "Interval Analysis of Neural Net Adaptive Expert Systems for Diagnosis of Machinery Incipient Failure" @default.
- W3136180481 doi "https://doi.org/10.1115/detc1993-0279" @default.
- W3136180481 hasPublicationYear "1993" @default.
- W3136180481 type Work @default.
- W3136180481 sameAs 3136180481 @default.
- W3136180481 citedByCount "2" @default.
- W3136180481 countsByYear W31361804812022 @default.
- W3136180481 crossrefType "proceedings-article" @default.
- W3136180481 hasAuthorship W3136180481A5033050224 @default.
- W3136180481 hasConcept C11413529 @default.
- W3136180481 hasConcept C114614502 @default.
- W3136180481 hasConcept C119857082 @default.
- W3136180481 hasConcept C134306372 @default.
- W3136180481 hasConcept C154945302 @default.
- W3136180481 hasConcept C18912844 @default.
- W3136180481 hasConcept C191252586 @default.
- W3136180481 hasConcept C2778067643 @default.
- W3136180481 hasConcept C33923547 @default.
- W3136180481 hasConcept C34388435 @default.
- W3136180481 hasConcept C41008148 @default.
- W3136180481 hasConcept C42011625 @default.
- W3136180481 hasConcept C50644808 @default.
- W3136180481 hasConcept C58166 @default.
- W3136180481 hasConcept C58328972 @default.
- W3136180481 hasConcept C80444323 @default.
- W3136180481 hasConcept C9376300 @default.
- W3136180481 hasConceptScore W3136180481C11413529 @default.
- W3136180481 hasConceptScore W3136180481C114614502 @default.
- W3136180481 hasConceptScore W3136180481C119857082 @default.
- W3136180481 hasConceptScore W3136180481C134306372 @default.
- W3136180481 hasConceptScore W3136180481C154945302 @default.
- W3136180481 hasConceptScore W3136180481C18912844 @default.
- W3136180481 hasConceptScore W3136180481C191252586 @default.
- W3136180481 hasConceptScore W3136180481C2778067643 @default.
- W3136180481 hasConceptScore W3136180481C33923547 @default.
- W3136180481 hasConceptScore W3136180481C34388435 @default.
- W3136180481 hasConceptScore W3136180481C41008148 @default.
- W3136180481 hasConceptScore W3136180481C42011625 @default.
- W3136180481 hasConceptScore W3136180481C50644808 @default.
- W3136180481 hasConceptScore W3136180481C58166 @default.
- W3136180481 hasConceptScore W3136180481C58328972 @default.
- W3136180481 hasConceptScore W3136180481C80444323 @default.
- W3136180481 hasConceptScore W3136180481C9376300 @default.
- W3136180481 hasLocation W31361804811 @default.
- W3136180481 hasOpenAccess W3136180481 @default.
- W3136180481 hasPrimaryLocation W31361804811 @default.
- W3136180481 hasRelatedWork W1542502870 @default.
- W3136180481 hasRelatedWork W1575879412 @default.
- W3136180481 hasRelatedWork W2000405793 @default.
- W3136180481 hasRelatedWork W2100898894 @default.
- W3136180481 hasRelatedWork W2209666578 @default.
- W3136180481 hasRelatedWork W23638761 @default.
- W3136180481 hasRelatedWork W2388711968 @default.
- W3136180481 hasRelatedWork W2403711553 @default.
- W3136180481 hasRelatedWork W2586701050 @default.
- W3136180481 hasRelatedWork W1629725936 @default.
- W3136180481 isParatext "false" @default.
- W3136180481 isRetracted "false" @default.
- W3136180481 magId "3136180481" @default.
- W3136180481 workType "article" @default.