Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136180534> ?p ?o ?g. }
- W3136180534 abstract "Existing works on multimodal affective computing tasks, such as emotion recognition, generally adopt a two-phase pipeline, first extracting feature representations for each single modality with hand-crafted algorithms and then performing end-to-end learning with the extracted features. However, the extracted features are fixed and cannot be further fine-tuned on different target tasks, and manually finding feature extraction algorithms does not generalize or scale well to different tasks, which can lead to sub-optimal performance. In this paper, we develop a fully end-to-end model that connects the two phases and optimizes them jointly. In addition, we restructure the current datasets to enable the fully end-to-end training. Furthermore, to reduce the computational overhead brought by the end-to-end model, we introduce a sparse cross-modal attention mechanism for the feature extraction. Experimental results show that our fully end-to-end model significantly surpasses the current state-of-the-art models based on the two-phase pipeline. Moreover, by adding the sparse cross-modal attention, our model can maintain performance with around half the computation in the feature extraction part." @default.
- W3136180534 created "2021-03-29" @default.
- W3136180534 creator A5011760791 @default.
- W3136180534 creator A5018904310 @default.
- W3136180534 creator A5065856469 @default.
- W3136180534 creator A5084836777 @default.
- W3136180534 date "2021-03-17" @default.
- W3136180534 modified "2023-10-17" @default.
- W3136180534 title "Multimodal End-to-End Sparse Model for Emotion Recognition" @default.
- W3136180534 cites W1522301498 @default.
- W3136180534 cites W1595126664 @default.
- W3136180534 cites W1628791547 @default.
- W3136180534 cites W1686810756 @default.
- W3136180534 cites W2070353225 @default.
- W3136180534 cites W2098689807 @default.
- W3136180534 cites W2122563357 @default.
- W3136180534 cites W2146334809 @default.
- W3136180534 cites W2250539671 @default.
- W3136180534 cites W2465534249 @default.
- W3136180534 cites W2514585554 @default.
- W3136180534 cites W2546919788 @default.
- W3136180534 cites W2550553598 @default.
- W3136180534 cites W2605593209 @default.
- W3136180534 cites W2612769033 @default.
- W3136180534 cites W2619383789 @default.
- W3136180534 cites W2624273542 @default.
- W3136180534 cites W2625297138 @default.
- W3136180534 cites W2738581557 @default.
- W3136180534 cites W2739862888 @default.
- W3136180534 cites W2787581402 @default.
- W3136180534 cites W2807126412 @default.
- W3136180534 cites W2808359495 @default.
- W3136180534 cites W2883409523 @default.
- W3136180534 cites W2938704169 @default.
- W3136180534 cites W2949549939 @default.
- W3136180534 cites W2963403868 @default.
- W3136180534 cites W2964051877 @default.
- W3136180534 cites W2964216663 @default.
- W3136180534 cites W2964260444 @default.
- W3136180534 cites W2966683369 @default.
- W3136180534 cites W2968124245 @default.
- W3136180534 cites W2970971581 @default.
- W3136180534 cites W2972797781 @default.
- W3136180534 cites W3023404787 @default.
- W3136180534 cites W3034266838 @default.
- W3136180534 cites W3080084198 @default.
- W3136180534 cites W3087434251 @default.
- W3136180534 cites W3101998545 @default.
- W3136180534 doi "https://doi.org/10.48550/arxiv.2103.09666" @default.
- W3136180534 hasPublicationYear "2021" @default.
- W3136180534 type Work @default.
- W3136180534 sameAs 3136180534 @default.
- W3136180534 citedByCount "1" @default.
- W3136180534 countsByYear W31361805342021 @default.
- W3136180534 crossrefType "posted-content" @default.
- W3136180534 hasAuthorship W3136180534A5011760791 @default.
- W3136180534 hasAuthorship W3136180534A5018904310 @default.
- W3136180534 hasAuthorship W3136180534A5065856469 @default.
- W3136180534 hasAuthorship W3136180534A5084836777 @default.
- W3136180534 hasBestOaLocation W31361805341 @default.
- W3136180534 hasConcept C111919701 @default.
- W3136180534 hasConcept C11413529 @default.
- W3136180534 hasConcept C119857082 @default.
- W3136180534 hasConcept C138885662 @default.
- W3136180534 hasConcept C153180895 @default.
- W3136180534 hasConcept C154945302 @default.
- W3136180534 hasConcept C185592680 @default.
- W3136180534 hasConcept C188027245 @default.
- W3136180534 hasConcept C199360897 @default.
- W3136180534 hasConcept C2776401178 @default.
- W3136180534 hasConcept C2779960059 @default.
- W3136180534 hasConcept C41008148 @default.
- W3136180534 hasConcept C41895202 @default.
- W3136180534 hasConcept C43521106 @default.
- W3136180534 hasConcept C45374587 @default.
- W3136180534 hasConcept C52622490 @default.
- W3136180534 hasConcept C71139939 @default.
- W3136180534 hasConcept C74296488 @default.
- W3136180534 hasConceptScore W3136180534C111919701 @default.
- W3136180534 hasConceptScore W3136180534C11413529 @default.
- W3136180534 hasConceptScore W3136180534C119857082 @default.
- W3136180534 hasConceptScore W3136180534C138885662 @default.
- W3136180534 hasConceptScore W3136180534C153180895 @default.
- W3136180534 hasConceptScore W3136180534C154945302 @default.
- W3136180534 hasConceptScore W3136180534C185592680 @default.
- W3136180534 hasConceptScore W3136180534C188027245 @default.
- W3136180534 hasConceptScore W3136180534C199360897 @default.
- W3136180534 hasConceptScore W3136180534C2776401178 @default.
- W3136180534 hasConceptScore W3136180534C2779960059 @default.
- W3136180534 hasConceptScore W3136180534C41008148 @default.
- W3136180534 hasConceptScore W3136180534C41895202 @default.
- W3136180534 hasConceptScore W3136180534C43521106 @default.
- W3136180534 hasConceptScore W3136180534C45374587 @default.
- W3136180534 hasConceptScore W3136180534C52622490 @default.
- W3136180534 hasConceptScore W3136180534C71139939 @default.
- W3136180534 hasConceptScore W3136180534C74296488 @default.
- W3136180534 hasLocation W31361805341 @default.
- W3136180534 hasOpenAccess W3136180534 @default.
- W3136180534 hasPrimaryLocation W31361805341 @default.
- W3136180534 hasRelatedWork W1572523360 @default.