Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136180988> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3136180988 endingPage "30" @default.
- W3136180988 startingPage "26" @default.
- W3136180988 abstract "Computer vision (CV) is a subset of artificial intelligence that performs computations on image or video data, permitting the quantitative analysis of visual information. Common CV tasks that may be relevant to surgeons include image classification, object detection and tracking, and extraction of higher order features. Despite the potential applications of CV to intraoperative video, however, few surgeons describe the use of CV. A primary roadblock in implementing CV is the lack of a clear workflow to create an intraoperative video dataset to which CV can be applied. We report general principles for creating usable surgical video datasets and the result of their applications. Video annotations from cadaveric endoscopic endonasal skull base simulations (n = 20 trials of 1–5 minutes, size = 8 GB) were reviewed by 2 researcher-annotators. An internal, retrospective analysis of workflow for development of the intraoperative video annotations was performed to identify guiding practices. Approximately 34,000 frames of surgical video were annotated. Key considerations in developing annotation workflows include 1) overcoming software and personnel constraints; 2) ensuring adequate storage and access infrastructure; 3) optimization and standardization of annotation protocol; and 4) operationalizing annotated data. Potential tools for use include CVAT (Computer Vision Annotation Tool) and Vott: open-sourced annotation software allowing for local video storage, easy setup, and the use of interpolation. CV techniques can be applied to surgical video, but challenges for novice users may limit adoption. We outline principles in annotation workflow that can mitigate initial challenges groups may have when converting raw video into useable, annotated datasets." @default.
- W3136180988 created "2021-03-29" @default.
- W3136180988 creator A5013639771 @default.
- W3136180988 creator A5023033992 @default.
- W3136180988 creator A5030125590 @default.
- W3136180988 creator A5048709528 @default.
- W3136180988 creator A5049156060 @default.
- W3136180988 creator A5085362780 @default.
- W3136180988 date "2021-06-01" @default.
- W3136180988 modified "2023-09-25" @default.
- W3136180988 title "A Guide to Annotation of Neurosurgical Intraoperative Video for Machine Learning Analysis and Computer Vision" @default.
- W3136180988 cites W1506491340 @default.
- W3136180988 cites W2018421200 @default.
- W3136180988 cites W2087190918 @default.
- W3136180988 cites W2091473623 @default.
- W3136180988 cites W2108579443 @default.
- W3136180988 cites W2591837242 @default.
- W3136180988 cites W2748069458 @default.
- W3136180988 cites W2790209545 @default.
- W3136180988 cites W2793321863 @default.
- W3136180988 cites W2809241522 @default.
- W3136180988 cites W2887311010 @default.
- W3136180988 cites W2916629625 @default.
- W3136180988 cites W2949551779 @default.
- W3136180988 cites W2958914562 @default.
- W3136180988 cites W2966447025 @default.
- W3136180988 cites W3044915203 @default.
- W3136180988 cites W3105393320 @default.
- W3136180988 doi "https://doi.org/10.1016/j.wneu.2021.03.022" @default.
- W3136180988 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33722717" @default.
- W3136180988 hasPublicationYear "2021" @default.
- W3136180988 type Work @default.
- W3136180988 sameAs 3136180988 @default.
- W3136180988 citedByCount "11" @default.
- W3136180988 countsByYear W31361809882021 @default.
- W3136180988 countsByYear W31361809882022 @default.
- W3136180988 crossrefType "journal-article" @default.
- W3136180988 hasAuthorship W3136180988A5013639771 @default.
- W3136180988 hasAuthorship W3136180988A5023033992 @default.
- W3136180988 hasAuthorship W3136180988A5030125590 @default.
- W3136180988 hasAuthorship W3136180988A5048709528 @default.
- W3136180988 hasAuthorship W3136180988A5049156060 @default.
- W3136180988 hasAuthorship W3136180988A5085362780 @default.
- W3136180988 hasBestOaLocation W31361809882 @default.
- W3136180988 hasConcept C141071460 @default.
- W3136180988 hasConcept C154945302 @default.
- W3136180988 hasConcept C19527891 @default.
- W3136180988 hasConcept C2776321320 @default.
- W3136180988 hasConcept C41008148 @default.
- W3136180988 hasConcept C61434518 @default.
- W3136180988 hasConcept C71924100 @default.
- W3136180988 hasConceptScore W3136180988C141071460 @default.
- W3136180988 hasConceptScore W3136180988C154945302 @default.
- W3136180988 hasConceptScore W3136180988C19527891 @default.
- W3136180988 hasConceptScore W3136180988C2776321320 @default.
- W3136180988 hasConceptScore W3136180988C41008148 @default.
- W3136180988 hasConceptScore W3136180988C61434518 @default.
- W3136180988 hasConceptScore W3136180988C71924100 @default.
- W3136180988 hasLocation W31361809881 @default.
- W3136180988 hasLocation W31361809882 @default.
- W3136180988 hasOpenAccess W3136180988 @default.
- W3136180988 hasPrimaryLocation W31361809881 @default.
- W3136180988 hasRelatedWork W2002120878 @default.
- W3136180988 hasRelatedWork W2003938723 @default.
- W3136180988 hasRelatedWork W2047967234 @default.
- W3136180988 hasRelatedWork W2118496982 @default.
- W3136180988 hasRelatedWork W2364998975 @default.
- W3136180988 hasRelatedWork W2369162477 @default.
- W3136180988 hasRelatedWork W2439875401 @default.
- W3136180988 hasRelatedWork W4238867864 @default.
- W3136180988 hasRelatedWork W2519357708 @default.
- W3136180988 hasRelatedWork W2525756941 @default.
- W3136180988 hasVolume "150" @default.
- W3136180988 isParatext "false" @default.
- W3136180988 isRetracted "false" @default.
- W3136180988 magId "3136180988" @default.
- W3136180988 workType "article" @default.