Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136188880> ?p ?o ?g. }
- W3136188880 endingPage "340" @default.
- W3136188880 startingPage "325" @default.
- W3136188880 abstract "COVID-19 is a life threatening disease which has a enormous global impact. As the cause of the disease is a novel coronavirus whose gene information is unknown, drugs and vaccines are yet to be found. For the present situation, disease spread analysis and prediction with the help of mathematical and data driven model will be of great help to initiate prevention and control action, namely lockdown and qurantine. There are various mathematical and machine-learning models proposed for analyzing the spread and prediction. Each model has its own limitations and advantages for a particluar scenario. This article reviews the state-of-the art mathematical models for COVID-19, including compartment models, statistical models and machine learning models to provide more insight, so that an appropriate model can be well adopted for the disease spread analysis. Furthermore, accurate diagnose of COVID-19 is another essential process to identify the infected person and control further spreading. As the spreading is fast, there is a need for quick auotomated diagnosis mechanism to handle large population. Deep-learning and machine-learning based diagnostic mechanism will be more appropriate for this purpose. In this aspect, a comprehensive review on the deep learning models for the diagnosis of the disease is also provided in this article." @default.
- W3136188880 created "2021-03-29" @default.
- W3136188880 creator A5020776822 @default.
- W3136188880 creator A5031189145 @default.
- W3136188880 creator A5033590024 @default.
- W3136188880 creator A5084756776 @default.
- W3136188880 date "2022-01-01" @default.
- W3136188880 modified "2023-10-18" @default.
- W3136188880 title "A Survey on Mathematical, Machine Learning and Deep Learning Models for COVID-19 Transmission and Diagnosis" @default.
- W3136188880 cites W1689711448 @default.
- W3136188880 cites W2054286767 @default.
- W3136188880 cites W2156031695 @default.
- W3136188880 cites W2162554556 @default.
- W3136188880 cites W2270330859 @default.
- W3136188880 cites W2463079943 @default.
- W3136188880 cites W2551299342 @default.
- W3136188880 cites W2883585595 @default.
- W3136188880 cites W2951896303 @default.
- W3136188880 cites W2964081830 @default.
- W3136188880 cites W2965118797 @default.
- W3136188880 cites W2994414664 @default.
- W3136188880 cites W2995814514 @default.
- W3136188880 cites W2999190269 @default.
- W3136188880 cites W3006028741 @default.
- W3136188880 cites W3009041394 @default.
- W3136188880 cites W3009468976 @default.
- W3136188880 cites W3009876049 @default.
- W3136188880 cites W3009946390 @default.
- W3136188880 cites W3010781325 @default.
- W3136188880 cites W3011427855 @default.
- W3136188880 cites W3012188173 @default.
- W3136188880 cites W3012189167 @default.
- W3136188880 cites W3012434404 @default.
- W3136188880 cites W3012864042 @default.
- W3136188880 cites W3013566370 @default.
- W3136188880 cites W3013601031 @default.
- W3136188880 cites W3013736905 @default.
- W3136188880 cites W3013978753 @default.
- W3136188880 cites W3014145608 @default.
- W3136188880 cites W3015351983 @default.
- W3136188880 cites W3015623674 @default.
- W3136188880 cites W3015636422 @default.
- W3136188880 cites W3015952469 @default.
- W3136188880 cites W3016038616 @default.
- W3136188880 cites W3017787557 @default.
- W3136188880 cites W3020166202 @default.
- W3136188880 cites W3021303430 @default.
- W3136188880 cites W3037538421 @default.
- W3136188880 cites W3040141037 @default.
- W3136188880 cites W3085954833 @default.
- W3136188880 cites W3118109004 @default.
- W3136188880 cites W3124001654 @default.
- W3136188880 cites W3125425378 @default.
- W3136188880 cites W3130147978 @default.
- W3136188880 cites W3135243128 @default.
- W3136188880 cites W4206544011 @default.
- W3136188880 cites W4247836593 @default.
- W3136188880 cites W4292156591 @default.
- W3136188880 doi "https://doi.org/10.1109/rbme.2021.3069213" @default.
- W3136188880 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33769936" @default.
- W3136188880 hasPublicationYear "2022" @default.
- W3136188880 type Work @default.
- W3136188880 sameAs 3136188880 @default.
- W3136188880 citedByCount "32" @default.
- W3136188880 countsByYear W31361888802021 @default.
- W3136188880 countsByYear W31361888802022 @default.
- W3136188880 countsByYear W31361888802023 @default.
- W3136188880 crossrefType "journal-article" @default.
- W3136188880 hasAuthorship W3136188880A5020776822 @default.
- W3136188880 hasAuthorship W3136188880A5031189145 @default.
- W3136188880 hasAuthorship W3136188880A5033590024 @default.
- W3136188880 hasAuthorship W3136188880A5084756776 @default.
- W3136188880 hasBestOaLocation W31361888801 @default.
- W3136188880 hasConcept C108583219 @default.
- W3136188880 hasConcept C111472728 @default.
- W3136188880 hasConcept C115903097 @default.
- W3136188880 hasConcept C119857082 @default.
- W3136188880 hasConcept C138885662 @default.
- W3136188880 hasConcept C142724271 @default.
- W3136188880 hasConcept C154945302 @default.
- W3136188880 hasConcept C2779134260 @default.
- W3136188880 hasConcept C2908647359 @default.
- W3136188880 hasConcept C3008058167 @default.
- W3136188880 hasConcept C41008148 @default.
- W3136188880 hasConcept C50644808 @default.
- W3136188880 hasConcept C524204448 @default.
- W3136188880 hasConcept C71924100 @default.
- W3136188880 hasConcept C761482 @default.
- W3136188880 hasConcept C76155785 @default.
- W3136188880 hasConcept C89611455 @default.
- W3136188880 hasConcept C99454951 @default.
- W3136188880 hasConceptScore W3136188880C108583219 @default.
- W3136188880 hasConceptScore W3136188880C111472728 @default.
- W3136188880 hasConceptScore W3136188880C115903097 @default.
- W3136188880 hasConceptScore W3136188880C119857082 @default.
- W3136188880 hasConceptScore W3136188880C138885662 @default.
- W3136188880 hasConceptScore W3136188880C142724271 @default.
- W3136188880 hasConceptScore W3136188880C154945302 @default.