Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136191390> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3136191390 abstract "For a metric continuum X, we study possible images of the set function (mathcal {T}). We begin by showing that (mathcal {T}(2^X)) is an analytic set for every metric continuum X. We are interested when either (mathcal {T}(mathcal {F}_1(X))) or (mathcal {T}(2^X)) is finite or countable. The notion of ω-indecomposable continuum is given as a generalization of the well known concept of n-indecomposable continuum. We also present results about the connectivity and compactness of (mathcal {T}(2^X)). We show that if X is a metric continuum such that (mathcal {T}(2^X)) is compact, then (mathcal {T}(2^X)) is either finite or uncountable. We give an example of a continuum X such that (mathcal {T}(2^X)) is countable." @default.
- W3136191390 created "2021-03-29" @default.
- W3136191390 creator A5028444212 @default.
- W3136191390 date "2020-11-27" @default.
- W3136191390 modified "2023-10-18" @default.
- W3136191390 title "Images of $$mathcal {T}$$" @default.
- W3136191390 cites W1539382740 @default.
- W3136191390 cites W2005612535 @default.
- W3136191390 cites W2036345117 @default.
- W3136191390 cites W2090694252 @default.
- W3136191390 cites W2792844360 @default.
- W3136191390 cites W291475467 @default.
- W3136191390 cites W2966697929 @default.
- W3136191390 cites W4235854453 @default.
- W3136191390 cites W4242774270 @default.
- W3136191390 cites W779097295 @default.
- W3136191390 doi "https://doi.org/10.1007/978-3-030-65081-0_6" @default.
- W3136191390 hasPublicationYear "2020" @default.
- W3136191390 type Work @default.
- W3136191390 sameAs 3136191390 @default.
- W3136191390 citedByCount "0" @default.
- W3136191390 crossrefType "book-chapter" @default.
- W3136191390 hasAuthorship W3136191390A5028444212 @default.
- W3136191390 hasConcept C110729354 @default.
- W3136191390 hasConcept C114614502 @default.
- W3136191390 hasConcept C118615104 @default.
- W3136191390 hasConcept C121332964 @default.
- W3136191390 hasConcept C134306372 @default.
- W3136191390 hasConcept C142399903 @default.
- W3136191390 hasConcept C157480366 @default.
- W3136191390 hasConcept C18648836 @default.
- W3136191390 hasConcept C202444582 @default.
- W3136191390 hasConcept C33923547 @default.
- W3136191390 hasConcept C96488702 @default.
- W3136191390 hasConceptScore W3136191390C110729354 @default.
- W3136191390 hasConceptScore W3136191390C114614502 @default.
- W3136191390 hasConceptScore W3136191390C118615104 @default.
- W3136191390 hasConceptScore W3136191390C121332964 @default.
- W3136191390 hasConceptScore W3136191390C134306372 @default.
- W3136191390 hasConceptScore W3136191390C142399903 @default.
- W3136191390 hasConceptScore W3136191390C157480366 @default.
- W3136191390 hasConceptScore W3136191390C18648836 @default.
- W3136191390 hasConceptScore W3136191390C202444582 @default.
- W3136191390 hasConceptScore W3136191390C33923547 @default.
- W3136191390 hasConceptScore W3136191390C96488702 @default.
- W3136191390 hasLocation W31361913901 @default.
- W3136191390 hasOpenAccess W3136191390 @default.
- W3136191390 hasPrimaryLocation W31361913901 @default.
- W3136191390 hasRelatedWork W13641696 @default.
- W3136191390 hasRelatedWork W19648788 @default.
- W3136191390 hasRelatedWork W21147854 @default.
- W3136191390 hasRelatedWork W24519920 @default.
- W3136191390 hasRelatedWork W27235120 @default.
- W3136191390 hasRelatedWork W29522065 @default.
- W3136191390 hasRelatedWork W3549170 @default.
- W3136191390 hasRelatedWork W9847657 @default.
- W3136191390 hasRelatedWork W9892475 @default.
- W3136191390 hasRelatedWork W16230239 @default.
- W3136191390 isParatext "false" @default.
- W3136191390 isRetracted "false" @default.
- W3136191390 magId "3136191390" @default.
- W3136191390 workType "book-chapter" @default.