Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136193413> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3136193413 abstract "Machine learning is one of the most significant dimensions of artificial Intelligence. It is being used in almost all fields of science and technology. The Healthcare sector is one such realm where the application of machine learning has given excellent results. Moreover, in combination with the Internet of Things (IoT), machine learning has been widely successful in the healthcare sector. Still, there are some areas that remain devoid of the growing technology. Mental illness is one of the areas where there hasn't been any perfect treatment. Predicting whether a person has a mental illness itself is the big challenge. Psychologists provide assessment and therapy to their clients with one-on-one physical interactions. Still, there is some ambiguity regarding the treatment. Although psychologists prescribe various medications for their clients like anti-depressants, sleeping pills, etc.; still, the medication hasn't been able to cure or eradicate the sickness. There may be multiple reasons why a person is going through a certain situation like society, work pressure, family, etc. Our research on this topic will be limited to predicting such sickness in the human body and identifying what the person is going through using the previously recorded dataset. We will be using Logistic Regression, Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbor, and Naïve-Bayes algorithms for creating ensemble models and further compare the models. We have applied the proposed algorithms on the Kaggle dataset having 334 sample sizes with 31 different fields about unemployment and mental illness. In the end, the test result of this application can be an authentic example of IoT in healthcare." @default.
- W3136193413 created "2021-03-29" @default.
- W3136193413 creator A5003423341 @default.
- W3136193413 creator A5027433743 @default.
- W3136193413 creator A5033912893 @default.
- W3136193413 creator A5048113544 @default.
- W3136193413 creator A5091381815 @default.
- W3136193413 date "2021-01-28" @default.
- W3136193413 modified "2023-10-06" @default.
- W3136193413 title "A Machine Learning Implementation for Mental Health Care. Application: Smart Watch for Depression Detection" @default.
- W3136193413 cites W2942244239 @default.
- W3136193413 cites W3020179598 @default.
- W3136193413 doi "https://doi.org/10.1109/confluence51648.2021.9377199" @default.
- W3136193413 hasPublicationYear "2021" @default.
- W3136193413 type Work @default.
- W3136193413 sameAs 3136193413 @default.
- W3136193413 citedByCount "16" @default.
- W3136193413 countsByYear W31361934132021 @default.
- W3136193413 countsByYear W31361934132022 @default.
- W3136193413 countsByYear W31361934132023 @default.
- W3136193413 crossrefType "proceedings-article" @default.
- W3136193413 hasAuthorship W3136193413A5003423341 @default.
- W3136193413 hasAuthorship W3136193413A5027433743 @default.
- W3136193413 hasAuthorship W3136193413A5033912893 @default.
- W3136193413 hasAuthorship W3136193413A5048113544 @default.
- W3136193413 hasAuthorship W3136193413A5091381815 @default.
- W3136193413 hasConcept C118552586 @default.
- W3136193413 hasConcept C119857082 @default.
- W3136193413 hasConcept C12267149 @default.
- W3136193413 hasConcept C124101348 @default.
- W3136193413 hasConcept C134362201 @default.
- W3136193413 hasConcept C139719470 @default.
- W3136193413 hasConcept C154945302 @default.
- W3136193413 hasConcept C15744967 @default.
- W3136193413 hasConcept C160735492 @default.
- W3136193413 hasConcept C162324750 @default.
- W3136193413 hasConcept C2776674806 @default.
- W3136193413 hasConcept C2776867660 @default.
- W3136193413 hasConcept C41008148 @default.
- W3136193413 hasConcept C50522688 @default.
- W3136193413 hasConcept C52001869 @default.
- W3136193413 hasConcept C75684735 @default.
- W3136193413 hasConcept C84525736 @default.
- W3136193413 hasConceptScore W3136193413C118552586 @default.
- W3136193413 hasConceptScore W3136193413C119857082 @default.
- W3136193413 hasConceptScore W3136193413C12267149 @default.
- W3136193413 hasConceptScore W3136193413C124101348 @default.
- W3136193413 hasConceptScore W3136193413C134362201 @default.
- W3136193413 hasConceptScore W3136193413C139719470 @default.
- W3136193413 hasConceptScore W3136193413C154945302 @default.
- W3136193413 hasConceptScore W3136193413C15744967 @default.
- W3136193413 hasConceptScore W3136193413C160735492 @default.
- W3136193413 hasConceptScore W3136193413C162324750 @default.
- W3136193413 hasConceptScore W3136193413C2776674806 @default.
- W3136193413 hasConceptScore W3136193413C2776867660 @default.
- W3136193413 hasConceptScore W3136193413C41008148 @default.
- W3136193413 hasConceptScore W3136193413C50522688 @default.
- W3136193413 hasConceptScore W3136193413C52001869 @default.
- W3136193413 hasConceptScore W3136193413C75684735 @default.
- W3136193413 hasConceptScore W3136193413C84525736 @default.
- W3136193413 hasLocation W31361934131 @default.
- W3136193413 hasOpenAccess W3136193413 @default.
- W3136193413 hasPrimaryLocation W31361934131 @default.
- W3136193413 hasRelatedWork W1470425429 @default.
- W3136193413 hasRelatedWork W3022791929 @default.
- W3136193413 hasRelatedWork W3186233728 @default.
- W3136193413 hasRelatedWork W4226139868 @default.
- W3136193413 hasRelatedWork W4291177832 @default.
- W3136193413 hasRelatedWork W4327772909 @default.
- W3136193413 hasRelatedWork W4377964522 @default.
- W3136193413 hasRelatedWork W4384345534 @default.
- W3136193413 hasRelatedWork W4385810203 @default.
- W3136193413 hasRelatedWork W4386263996 @default.
- W3136193413 isParatext "false" @default.
- W3136193413 isRetracted "false" @default.
- W3136193413 magId "3136193413" @default.
- W3136193413 workType "article" @default.