Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136200549> ?p ?o ?g. }
- W3136200549 endingPage "4275" @default.
- W3136200549 startingPage "4267" @default.
- W3136200549 abstract "Teledermatology is one of the most illustrious applications of telemedicine and e-health. In this field, telecommunication technologies are utilized to transfer medical information to the experts. Due to the skin's visual nature, teledermatology is an effective tool for the diagnosis of skin lesions especially in rural areas. Furthermore, it can also be useful to limit gratuitous clinical referrals and triage dermatology cases. The objective of this research is to classify the skin lesion image samples, received from different servers. The proposed framework is comprised of two module, which include the skin lesion localization/segmentation and the classification. In the localization module, we propose a hybrid strategy that fuses the binary images generated from the designed 16-layered convolutional neural network model and an improved high dimension contrast transform (HDCT) based saliency segmentation. To utilize maximum information extracted from the binary images, a maximal mutual information method is proposed, which returns the segmented RGB lesion image. In the classification module, a pre-trained DenseNet201 model is re-trained on the segmented lesion images using transfer learning. Afterward, the extracted features from the two fully connected layers are down-sampled using the t-distribution stochastic neighbor embedding (t-SNE) method. These resultant features are finally fused using a multi canonical correlation (MCCA) approach and are passed to a multi-class ELM classifier. Four datasets (i.e., ISBI2016, ISIC2017, PH2, and ISBI2018) are employed for the evaluation of the segmentation task, while HAM10000, the most challenging dataset, is used for the classification task. The experimental results in comparison with the state-of-the-art methods affirm the strength of our proposed framework." @default.
- W3136200549 created "2021-03-29" @default.
- W3136200549 creator A5007903045 @default.
- W3136200549 creator A5018267985 @default.
- W3136200549 creator A5045093520 @default.
- W3136200549 creator A5052505171 @default.
- W3136200549 creator A5084968897 @default.
- W3136200549 date "2021-12-01" @default.
- W3136200549 modified "2023-10-16" @default.
- W3136200549 title "Multi-Class Skin Lesion Detection and Classification via Teledermatology" @default.
- W3136200549 cites W2000292092 @default.
- W3136200549 cites W2035713536 @default.
- W3136200549 cites W2040600853 @default.
- W3136200549 cites W2160398355 @default.
- W3136200549 cites W2440599146 @default.
- W3136200549 cites W2559090303 @default.
- W3136200549 cites W2599182484 @default.
- W3136200549 cites W2796862521 @default.
- W3136200549 cites W2916740872 @default.
- W3136200549 cites W2925762195 @default.
- W3136200549 cites W2963446712 @default.
- W3136200549 cites W2970321969 @default.
- W3136200549 cites W2972588473 @default.
- W3136200549 cites W2975348219 @default.
- W3136200549 cites W2979306089 @default.
- W3136200549 cites W2983542513 @default.
- W3136200549 cites W2987039128 @default.
- W3136200549 cites W2988142396 @default.
- W3136200549 cites W2992080603 @default.
- W3136200549 cites W2994880724 @default.
- W3136200549 cites W3001669684 @default.
- W3136200549 cites W3001788335 @default.
- W3136200549 cites W3006300626 @default.
- W3136200549 cites W3008320599 @default.
- W3136200549 cites W3009222274 @default.
- W3136200549 cites W3082317190 @default.
- W3136200549 cites W3120908866 @default.
- W3136200549 doi "https://doi.org/10.1109/jbhi.2021.3067789" @default.
- W3136200549 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33750716" @default.
- W3136200549 hasPublicationYear "2021" @default.
- W3136200549 type Work @default.
- W3136200549 sameAs 3136200549 @default.
- W3136200549 citedByCount "70" @default.
- W3136200549 countsByYear W31362005492021 @default.
- W3136200549 countsByYear W31362005492022 @default.
- W3136200549 countsByYear W31362005492023 @default.
- W3136200549 crossrefType "journal-article" @default.
- W3136200549 hasAuthorship W3136200549A5007903045 @default.
- W3136200549 hasAuthorship W3136200549A5018267985 @default.
- W3136200549 hasAuthorship W3136200549A5045093520 @default.
- W3136200549 hasAuthorship W3136200549A5052505171 @default.
- W3136200549 hasAuthorship W3136200549A5084968897 @default.
- W3136200549 hasConcept C115961682 @default.
- W3136200549 hasConcept C12267149 @default.
- W3136200549 hasConcept C124504099 @default.
- W3136200549 hasConcept C153180895 @default.
- W3136200549 hasConcept C154945302 @default.
- W3136200549 hasConcept C194828623 @default.
- W3136200549 hasConcept C2777120189 @default.
- W3136200549 hasConcept C31972630 @default.
- W3136200549 hasConcept C41008148 @default.
- W3136200549 hasConcept C66905080 @default.
- W3136200549 hasConcept C71924100 @default.
- W3136200549 hasConcept C75294576 @default.
- W3136200549 hasConcept C81363708 @default.
- W3136200549 hasConcept C82990744 @default.
- W3136200549 hasConcept C89600930 @default.
- W3136200549 hasConceptScore W3136200549C115961682 @default.
- W3136200549 hasConceptScore W3136200549C12267149 @default.
- W3136200549 hasConceptScore W3136200549C124504099 @default.
- W3136200549 hasConceptScore W3136200549C153180895 @default.
- W3136200549 hasConceptScore W3136200549C154945302 @default.
- W3136200549 hasConceptScore W3136200549C194828623 @default.
- W3136200549 hasConceptScore W3136200549C2777120189 @default.
- W3136200549 hasConceptScore W3136200549C31972630 @default.
- W3136200549 hasConceptScore W3136200549C41008148 @default.
- W3136200549 hasConceptScore W3136200549C66905080 @default.
- W3136200549 hasConceptScore W3136200549C71924100 @default.
- W3136200549 hasConceptScore W3136200549C75294576 @default.
- W3136200549 hasConceptScore W3136200549C81363708 @default.
- W3136200549 hasConceptScore W3136200549C82990744 @default.
- W3136200549 hasConceptScore W3136200549C89600930 @default.
- W3136200549 hasIssue "12" @default.
- W3136200549 hasLocation W31362005491 @default.
- W3136200549 hasLocation W31362005492 @default.
- W3136200549 hasOpenAccess W3136200549 @default.
- W3136200549 hasPrimaryLocation W31362005491 @default.
- W3136200549 hasRelatedWork W1669643531 @default.
- W3136200549 hasRelatedWork W2110230079 @default.
- W3136200549 hasRelatedWork W2117933325 @default.
- W3136200549 hasRelatedWork W2122581818 @default.
- W3136200549 hasRelatedWork W2134924024 @default.
- W3136200549 hasRelatedWork W2159066190 @default.
- W3136200549 hasRelatedWork W2558375057 @default.
- W3136200549 hasRelatedWork W2739874619 @default.
- W3136200549 hasRelatedWork W2785932105 @default.
- W3136200549 hasRelatedWork W3095523211 @default.
- W3136200549 hasVolume "25" @default.