Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136203106> ?p ?o ?g. }
- W3136203106 endingPage "627.e21" @default.
- W3136203106 startingPage "627.e13" @default.
- W3136203106 abstract "•Use of radiomics signature may predict pathologic complete response. •Radiomics-based model showed higher net benefit than no model use. •Radiomics-based model provides a tool for optimizing treatment plans. AIM To develop and validate a radiomics-based model for predicting response to neoadjuvant chemotherapy (NAC) using baseline computed tomography (CT) images in patients with muscle-invasive bladder cancer (MIBC). MATERIALS AND METHODS A radiomics signature for predicting pathological complete response (pCR) was developed using radiomics features selected by a random forest classifier on baseline CT images, and imaging predictors were identified in the training set (87 patients). By incorporating imaging predictors and radiomics signature, an imaging-based model was constructed using multivariate logistic regression analysis and validated in an independent validation set consisting of 48 patients with CT from outside institutions. The performance and clinical usefulness of the imaging-based model for predicting pCR were evaluated using area under the receiver operating characteristic curve (AUC) and decision curve analysis. Using a cut-off determined in the training set, the positive likelihood ratios of the imaging-based model were calculated and compared with imaging and histological predictors. RESULTS The radiomics signature was developed based on six stable radiomics features. An imaging-based model incorporating radiomics signature, tumour shape, tumour size, and clinical stage showed good performance for predicting pCR in both the training (AUC, 0.85; 95% confidence interval [CI], 0.78–0.93) and validation (AUC, 0.75; 95% CI, 0.60–0.86) sets, providing a larger net benefit in decision curve analysis. The imaging-based model showed a higher positive likelihood ratio (1.91) for pCR than imaging and histological predictors (1.33–1.63). CONCLUSIONS The radiomics-based model using baseline CT images may predict the response of patients with MIBC to NAC. To develop and validate a radiomics-based model for predicting response to neoadjuvant chemotherapy (NAC) using baseline computed tomography (CT) images in patients with muscle-invasive bladder cancer (MIBC). A radiomics signature for predicting pathological complete response (pCR) was developed using radiomics features selected by a random forest classifier on baseline CT images, and imaging predictors were identified in the training set (87 patients). By incorporating imaging predictors and radiomics signature, an imaging-based model was constructed using multivariate logistic regression analysis and validated in an independent validation set consisting of 48 patients with CT from outside institutions. The performance and clinical usefulness of the imaging-based model for predicting pCR were evaluated using area under the receiver operating characteristic curve (AUC) and decision curve analysis. Using a cut-off determined in the training set, the positive likelihood ratios of the imaging-based model were calculated and compared with imaging and histological predictors. The radiomics signature was developed based on six stable radiomics features. An imaging-based model incorporating radiomics signature, tumour shape, tumour size, and clinical stage showed good performance for predicting pCR in both the training (AUC, 0.85; 95% confidence interval [CI], 0.78–0.93) and validation (AUC, 0.75; 95% CI, 0.60–0.86) sets, providing a larger net benefit in decision curve analysis. The imaging-based model showed a higher positive likelihood ratio (1.91) for pCR than imaging and histological predictors (1.33–1.63). The radiomics-based model using baseline CT images may predict the response of patients with MIBC to NAC." @default.
- W3136203106 created "2021-03-29" @default.
- W3136203106 creator A5013631505 @default.
- W3136203106 creator A5015130584 @default.
- W3136203106 creator A5027011576 @default.
- W3136203106 creator A5028745234 @default.
- W3136203106 creator A5031628532 @default.
- W3136203106 creator A5086313203 @default.
- W3136203106 date "2021-08-01" @default.
- W3136203106 modified "2023-10-11" @default.
- W3136203106 title "Radiomics-based model for predicting pathological complete response to neoadjuvant chemotherapy in muscle-invasive bladder cancer" @default.
- W3136203106 cites W1893588230 @default.
- W3136203106 cites W1964037817 @default.
- W3136203106 cites W1975918912 @default.
- W3136203106 cites W1982840180 @default.
- W3136203106 cites W1989141974 @default.
- W3136203106 cites W2033775272 @default.
- W3136203106 cites W2052507258 @default.
- W3136203106 cites W2053024215 @default.
- W3136203106 cites W2058833787 @default.
- W3136203106 cites W2078191480 @default.
- W3136203106 cites W2131178190 @default.
- W3136203106 cites W2145612694 @default.
- W3136203106 cites W2398056625 @default.
- W3136203106 cites W2462649057 @default.
- W3136203106 cites W2518787149 @default.
- W3136203106 cites W2588434214 @default.
- W3136203106 cites W2616461360 @default.
- W3136203106 cites W2619001329 @default.
- W3136203106 cites W2619249519 @default.
- W3136203106 cites W2623144351 @default.
- W3136203106 cites W2738200477 @default.
- W3136203106 cites W2746549795 @default.
- W3136203106 cites W2753148287 @default.
- W3136203106 cites W2767128594 @default.
- W3136203106 cites W2793785683 @default.
- W3136203106 cites W2801894005 @default.
- W3136203106 cites W2890545119 @default.
- W3136203106 cites W2897581535 @default.
- W3136203106 cites W2900422713 @default.
- W3136203106 cites W2911964244 @default.
- W3136203106 cites W2923501617 @default.
- W3136203106 cites W2938240210 @default.
- W3136203106 cites W2944489822 @default.
- W3136203106 cites W2953404953 @default.
- W3136203106 cites W2968685186 @default.
- W3136203106 cites W2972475028 @default.
- W3136203106 cites W2972535768 @default.
- W3136203106 cites W2988581606 @default.
- W3136203106 cites W2990177821 @default.
- W3136203106 cites W2994850947 @default.
- W3136203106 cites W2998789541 @default.
- W3136203106 cites W3001752792 @default.
- W3136203106 cites W3009536178 @default.
- W3136203106 cites W3024657141 @default.
- W3136203106 cites W3033965569 @default.
- W3136203106 cites W3102493364 @default.
- W3136203106 doi "https://doi.org/10.1016/j.crad.2021.03.001" @default.
- W3136203106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33762138" @default.
- W3136203106 hasPublicationYear "2021" @default.
- W3136203106 type Work @default.
- W3136203106 sameAs 3136203106 @default.
- W3136203106 citedByCount "7" @default.
- W3136203106 countsByYear W31362031062022 @default.
- W3136203106 countsByYear W31362031062023 @default.
- W3136203106 crossrefType "journal-article" @default.
- W3136203106 hasAuthorship W3136203106A5013631505 @default.
- W3136203106 hasAuthorship W3136203106A5015130584 @default.
- W3136203106 hasAuthorship W3136203106A5027011576 @default.
- W3136203106 hasAuthorship W3136203106A5028745234 @default.
- W3136203106 hasAuthorship W3136203106A5031628532 @default.
- W3136203106 hasAuthorship W3136203106A5086313203 @default.
- W3136203106 hasConcept C121608353 @default.
- W3136203106 hasConcept C126322002 @default.
- W3136203106 hasConcept C126838900 @default.
- W3136203106 hasConcept C146357865 @default.
- W3136203106 hasConcept C151730666 @default.
- W3136203106 hasConcept C151956035 @default.
- W3136203106 hasConcept C154945302 @default.
- W3136203106 hasConcept C169258074 @default.
- W3136203106 hasConcept C2776694085 @default.
- W3136203106 hasConcept C2778292576 @default.
- W3136203106 hasConcept C2778559731 @default.
- W3136203106 hasConcept C2778822529 @default.
- W3136203106 hasConcept C2779984678 @default.
- W3136203106 hasConcept C2780352672 @default.
- W3136203106 hasConcept C41008148 @default.
- W3136203106 hasConcept C44249647 @default.
- W3136203106 hasConcept C530470458 @default.
- W3136203106 hasConcept C58471807 @default.
- W3136203106 hasConcept C71924100 @default.
- W3136203106 hasConcept C76318530 @default.
- W3136203106 hasConcept C86803240 @default.
- W3136203106 hasConceptScore W3136203106C121608353 @default.
- W3136203106 hasConceptScore W3136203106C126322002 @default.
- W3136203106 hasConceptScore W3136203106C126838900 @default.
- W3136203106 hasConceptScore W3136203106C146357865 @default.
- W3136203106 hasConceptScore W3136203106C151730666 @default.