Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136203590> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3136203590 abstract "Abstract The quality of genotyping calls resulting from DNA sequencing is reliant on high quality starting genetic material. One factor that can reduce sample quality and lead to misleading genotyping results is genetic contamination of a sample by another source, such as cells or DNA from another sample of the same or different species. Cross-sample contamination by individuals of the same species is particularly difficult to detect in DNA sequencing data, because the contaminating sequence reads look very similar to those of the intended base sample. We introduce a new method that uses a support vector regression model trained on in silico contaminated datasets to predict empirical contamination using a collection of variables drawn from VCF files, including the fraction of sites that are heterozygous, the fraction of heterozygous sites with imbalanced allele counts, and parameters describing distributions fit to heterozygous allele fractions in a sample. We use the method described here to train a model that can accurately predict the extent of cross-sample contamination within 1% of the actual fraction, for simulated contaminated samples in the 0-5% contamination range, directly from the VCF file. Definitions Lesser allele The allele in a heterozygous position that received less sequencing read support (which may be either the REF or ALT allele). Lesser allele fraction (LAF) The number of sequencing reads supporting the less frequently observed allele divided by the sum of reads supporting both alleles in the genotype at a given genomic position." @default.
- W3136203590 created "2021-03-29" @default.
- W3136203590 creator A5014026760 @default.
- W3136203590 creator A5042953138 @default.
- W3136203590 creator A5075634945 @default.
- W3136203590 creator A5086301349 @default.
- W3136203590 date "2021-03-12" @default.
- W3136203590 modified "2023-10-14" @default.
- W3136203590 title "VCFcontam: A Machine Learning Approach to Estimate Cross-Sample Contamination from Variant Call Data" @default.
- W3136203590 cites W1965092590 @default.
- W3136203590 cites W2101305463 @default.
- W3136203590 cites W2108234281 @default.
- W3136203590 cites W2159084616 @default.
- W3136203590 cites W2914895890 @default.
- W3136203590 cites W3000879939 @default.
- W3136203590 cites W3029661147 @default.
- W3136203590 cites W4229819940 @default.
- W3136203590 doi "https://doi.org/10.1101/2021.03.12.435007" @default.
- W3136203590 hasPublicationYear "2021" @default.
- W3136203590 type Work @default.
- W3136203590 sameAs 3136203590 @default.
- W3136203590 citedByCount "0" @default.
- W3136203590 crossrefType "posted-content" @default.
- W3136203590 hasAuthorship W3136203590A5014026760 @default.
- W3136203590 hasAuthorship W3136203590A5042953138 @default.
- W3136203590 hasAuthorship W3136203590A5075634945 @default.
- W3136203590 hasAuthorship W3136203590A5086301349 @default.
- W3136203590 hasBestOaLocation W31362035901 @default.
- W3136203590 hasConcept C104317684 @default.
- W3136203590 hasConcept C105795698 @default.
- W3136203590 hasConcept C112570922 @default.
- W3136203590 hasConcept C129848803 @default.
- W3136203590 hasConcept C135763542 @default.
- W3136203590 hasConcept C149629883 @default.
- W3136203590 hasConcept C178790620 @default.
- W3136203590 hasConcept C180754005 @default.
- W3136203590 hasConcept C185592680 @default.
- W3136203590 hasConcept C18903297 @default.
- W3136203590 hasConcept C198531522 @default.
- W3136203590 hasConcept C31467283 @default.
- W3136203590 hasConcept C33923547 @default.
- W3136203590 hasConcept C43617362 @default.
- W3136203590 hasConcept C51679486 @default.
- W3136203590 hasConcept C54355233 @default.
- W3136203590 hasConcept C552990157 @default.
- W3136203590 hasConcept C70721500 @default.
- W3136203590 hasConcept C86803240 @default.
- W3136203590 hasConceptScore W3136203590C104317684 @default.
- W3136203590 hasConceptScore W3136203590C105795698 @default.
- W3136203590 hasConceptScore W3136203590C112570922 @default.
- W3136203590 hasConceptScore W3136203590C129848803 @default.
- W3136203590 hasConceptScore W3136203590C135763542 @default.
- W3136203590 hasConceptScore W3136203590C149629883 @default.
- W3136203590 hasConceptScore W3136203590C178790620 @default.
- W3136203590 hasConceptScore W3136203590C180754005 @default.
- W3136203590 hasConceptScore W3136203590C185592680 @default.
- W3136203590 hasConceptScore W3136203590C18903297 @default.
- W3136203590 hasConceptScore W3136203590C198531522 @default.
- W3136203590 hasConceptScore W3136203590C31467283 @default.
- W3136203590 hasConceptScore W3136203590C33923547 @default.
- W3136203590 hasConceptScore W3136203590C43617362 @default.
- W3136203590 hasConceptScore W3136203590C51679486 @default.
- W3136203590 hasConceptScore W3136203590C54355233 @default.
- W3136203590 hasConceptScore W3136203590C552990157 @default.
- W3136203590 hasConceptScore W3136203590C70721500 @default.
- W3136203590 hasConceptScore W3136203590C86803240 @default.
- W3136203590 hasLocation W31362035901 @default.
- W3136203590 hasOpenAccess W3136203590 @default.
- W3136203590 hasPrimaryLocation W31362035901 @default.
- W3136203590 hasRelatedWork W121700474 @default.
- W3136203590 hasRelatedWork W2002717359 @default.
- W3136203590 hasRelatedWork W2008843816 @default.
- W3136203590 hasRelatedWork W2010208430 @default.
- W3136203590 hasRelatedWork W2057739827 @default.
- W3136203590 hasRelatedWork W2120212735 @default.
- W3136203590 hasRelatedWork W2360200346 @default.
- W3136203590 hasRelatedWork W2471536761 @default.
- W3136203590 hasRelatedWork W2810362112 @default.
- W3136203590 hasRelatedWork W3203513527 @default.
- W3136203590 isParatext "false" @default.
- W3136203590 isRetracted "false" @default.
- W3136203590 magId "3136203590" @default.
- W3136203590 workType "article" @default.