Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136204550> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3136204550 abstract "In this paper, we consider Big Data applications for connected vehicles, where vehicle data is sent several times per second, permitting fine-grained and near real-time analysis of vehicle status and operating behavior. We focus on typical streaming applications and present implementations in Apache Spark and Apache Flink in different architectures and analyze several aspects of Big Data architectures for connected vehicles. First, we aim to show the potential of fine-grained analysis in terms of time resolution and level of detail for vehicular services. For instance, we show how to compute energy efficiency, comparing used energy vs needed energy, on the level of seconds. Secondly, we compare the architecture challenges in vehicular systems, including in-vehicle processing as well as cloud and edge processing. For these, we compare different approaches and architecture solutions. Third, we show that the performance and scalability of our different Big Data processing options differ significantly different for our use case." @default.
- W3136204550 created "2021-03-29" @default.
- W3136204550 creator A5027257153 @default.
- W3136204550 creator A5063111123 @default.
- W3136204550 date "2020-12-10" @default.
- W3136204550 modified "2023-09-27" @default.
- W3136204550 title "Big Data Architectures for Vehicle Data Analysis" @default.
- W3136204550 cites W1964023669 @default.
- W3136204550 cites W2010272281 @default.
- W3136204550 cites W2016087887 @default.
- W3136204550 cites W2416799949 @default.
- W3136204550 cites W2498111289 @default.
- W3136204550 cites W2542459869 @default.
- W3136204550 cites W2551377934 @default.
- W3136204550 cites W2579482620 @default.
- W3136204550 cites W2595466675 @default.
- W3136204550 cites W2610481170 @default.
- W3136204550 cites W2612264206 @default.
- W3136204550 cites W2742666445 @default.
- W3136204550 cites W2751904527 @default.
- W3136204550 cites W2772043392 @default.
- W3136204550 cites W2775491715 @default.
- W3136204550 cites W2899731036 @default.
- W3136204550 cites W2962883027 @default.
- W3136204550 cites W3005257314 @default.
- W3136204550 cites W4237550525 @default.
- W3136204550 doi "https://doi.org/10.1109/bigdata50022.2020.9378397" @default.
- W3136204550 hasPublicationYear "2020" @default.
- W3136204550 type Work @default.
- W3136204550 sameAs 3136204550 @default.
- W3136204550 citedByCount "5" @default.
- W3136204550 countsByYear W31362045502021 @default.
- W3136204550 countsByYear W31362045502022 @default.
- W3136204550 countsByYear W31362045502023 @default.
- W3136204550 crossrefType "proceedings-article" @default.
- W3136204550 hasAuthorship W3136204550A5027257153 @default.
- W3136204550 hasAuthorship W3136204550A5063111123 @default.
- W3136204550 hasConcept C111919701 @default.
- W3136204550 hasConcept C41008148 @default.
- W3136204550 hasConcept C75684735 @default.
- W3136204550 hasConceptScore W3136204550C111919701 @default.
- W3136204550 hasConceptScore W3136204550C41008148 @default.
- W3136204550 hasConceptScore W3136204550C75684735 @default.
- W3136204550 hasLocation W31362045501 @default.
- W3136204550 hasOpenAccess W3136204550 @default.
- W3136204550 hasPrimaryLocation W31362045501 @default.
- W3136204550 hasRelatedWork W1434733837 @default.
- W3136204550 hasRelatedWork W1996408511 @default.
- W3136204550 hasRelatedWork W2130579308 @default.
- W3136204550 hasRelatedWork W2368437561 @default.
- W3136204550 hasRelatedWork W2767031189 @default.
- W3136204550 hasRelatedWork W2810034341 @default.
- W3136204550 hasRelatedWork W2901726430 @default.
- W3136204550 hasRelatedWork W333119613 @default.
- W3136204550 hasRelatedWork W398950355 @default.
- W3136204550 hasRelatedWork W786186891 @default.
- W3136204550 isParatext "false" @default.
- W3136204550 isRetracted "false" @default.
- W3136204550 magId "3136204550" @default.
- W3136204550 workType "article" @default.