Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136209691> ?p ?o ?g. }
- W3136209691 endingPage "1459" @default.
- W3136209691 startingPage "1449" @default.
- W3136209691 abstract "With the rapid development of social media platforms and the increasing scale of the social media data, the rumor detection task has become vitally important since the authenticity of posts cannot be guaranteed. To date, Many approaches have been proposed to facilitate the rumor detection process by utilizing the multi-task learning mechanism, which aims to improve the performance of rumor detection task by leveraging the useful information in the stance detection task. However, most of the existing approaches suffer from three limitations: (1) only focus on the textual content and ignore the multi-modal information which is key component contained in social media data; (2) ignore the difference of feature space between the stance detection task and rumor detection task, resulting in the unsatisfactory usage of stance information; (3) largely neglect the semantic information hidden in the fine-grained stance labels. Therefore, in this paper, we design a Multi-modal Meta Multi-Task Learning (MM-MTL) framework for social media rumor detection. To make use of multiple modalities, we design a multi-modal post embedding layer which considers both textual and visual content. To overcome the feature-sharing problem of the stance detection task and rumor detection task, we propose a meta knowledge-sharing scheme to share some higher meta network-layers and capture the meta knowledge behind the multi-modal post. To better utilize the semantic information hidden in the fine-grained stance labels, we employ the attention mechanism to estimate the weight of each reply. Extensive experiments on two Twitter benchmark datasets demonstrate that our proposed method achieves state-of-the-art performance." @default.
- W3136209691 created "2021-03-29" @default.
- W3136209691 creator A5000417495 @default.
- W3136209691 creator A5022636178 @default.
- W3136209691 creator A5024809473 @default.
- W3136209691 creator A5073601707 @default.
- W3136209691 date "2022-01-01" @default.
- W3136209691 modified "2023-10-16" @default.
- W3136209691 title "Multi-Modal Meta Multi-Task Learning for Social Media Rumor Detection" @default.
- W3136209691 cites W1975594555 @default.
- W3136209691 cites W2011261343 @default.
- W3136209691 cites W2023767423 @default.
- W3136209691 cites W2032897813 @default.
- W3136209691 cites W2051405935 @default.
- W3136209691 cites W2084591134 @default.
- W3136209691 cites W2093541376 @default.
- W3136209691 cites W2117130368 @default.
- W3136209691 cites W2123695991 @default.
- W3136209691 cites W2184450814 @default.
- W3136209691 cites W2189360217 @default.
- W3136209691 cites W2281420995 @default.
- W3136209691 cites W2294978630 @default.
- W3136209691 cites W2464503653 @default.
- W3136209691 cites W2531862055 @default.
- W3136209691 cites W2577716227 @default.
- W3136209691 cites W2582561810 @default.
- W3136209691 cites W2607700676 @default.
- W3136209691 cites W2609512471 @default.
- W3136209691 cites W2741930413 @default.
- W3136209691 cites W2753727548 @default.
- W3136209691 cites W2756851436 @default.
- W3136209691 cites W2766462585 @default.
- W3136209691 cites W2798966390 @default.
- W3136209691 cites W2809476703 @default.
- W3136209691 cites W2886491562 @default.
- W3136209691 cites W2890801081 @default.
- W3136209691 cites W2914246714 @default.
- W3136209691 cites W2962799101 @default.
- W3136209691 cites W2963952861 @default.
- W3136209691 cites W2971029044 @default.
- W3136209691 cites W2980708516 @default.
- W3136209691 cites W2982137384 @default.
- W3136209691 cites W2984618279 @default.
- W3136209691 cites W2993927576 @default.
- W3136209691 cites W4239943352 @default.
- W3136209691 cites W4252731897 @default.
- W3136209691 doi "https://doi.org/10.1109/tmm.2021.3065498" @default.
- W3136209691 hasPublicationYear "2022" @default.
- W3136209691 type Work @default.
- W3136209691 sameAs 3136209691 @default.
- W3136209691 citedByCount "16" @default.
- W3136209691 countsByYear W31362096912022 @default.
- W3136209691 countsByYear W31362096912023 @default.
- W3136209691 crossrefType "journal-article" @default.
- W3136209691 hasAuthorship W3136209691A5000417495 @default.
- W3136209691 hasAuthorship W3136209691A5022636178 @default.
- W3136209691 hasAuthorship W3136209691A5024809473 @default.
- W3136209691 hasAuthorship W3136209691A5073601707 @default.
- W3136209691 hasConcept C119857082 @default.
- W3136209691 hasConcept C13280743 @default.
- W3136209691 hasConcept C136764020 @default.
- W3136209691 hasConcept C154945302 @default.
- W3136209691 hasConcept C162324750 @default.
- W3136209691 hasConcept C17744445 @default.
- W3136209691 hasConcept C185592680 @default.
- W3136209691 hasConcept C185798385 @default.
- W3136209691 hasConcept C187736073 @default.
- W3136209691 hasConcept C188027245 @default.
- W3136209691 hasConcept C205649164 @default.
- W3136209691 hasConcept C2780451532 @default.
- W3136209691 hasConcept C2780469804 @default.
- W3136209691 hasConcept C39549134 @default.
- W3136209691 hasConcept C41008148 @default.
- W3136209691 hasConcept C518677369 @default.
- W3136209691 hasConcept C71139939 @default.
- W3136209691 hasConceptScore W3136209691C119857082 @default.
- W3136209691 hasConceptScore W3136209691C13280743 @default.
- W3136209691 hasConceptScore W3136209691C136764020 @default.
- W3136209691 hasConceptScore W3136209691C154945302 @default.
- W3136209691 hasConceptScore W3136209691C162324750 @default.
- W3136209691 hasConceptScore W3136209691C17744445 @default.
- W3136209691 hasConceptScore W3136209691C185592680 @default.
- W3136209691 hasConceptScore W3136209691C185798385 @default.
- W3136209691 hasConceptScore W3136209691C187736073 @default.
- W3136209691 hasConceptScore W3136209691C188027245 @default.
- W3136209691 hasConceptScore W3136209691C205649164 @default.
- W3136209691 hasConceptScore W3136209691C2780451532 @default.
- W3136209691 hasConceptScore W3136209691C2780469804 @default.
- W3136209691 hasConceptScore W3136209691C39549134 @default.
- W3136209691 hasConceptScore W3136209691C41008148 @default.
- W3136209691 hasConceptScore W3136209691C518677369 @default.
- W3136209691 hasConceptScore W3136209691C71139939 @default.
- W3136209691 hasFunder F4320321001 @default.
- W3136209691 hasFunder F4320327721 @default.
- W3136209691 hasLocation W31362096911 @default.
- W3136209691 hasOpenAccess W3136209691 @default.
- W3136209691 hasPrimaryLocation W31362096911 @default.
- W3136209691 hasRelatedWork W1485630101 @default.