Matches in SemOpenAlex for { <https://semopenalex.org/work/W3136215431> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3136215431 abstract "Epileptic seizure in the brain affects the day-to-day life of any individual due to its unexpected nature of occurrence. It has affected more than 50 million people worldwide. Drug resistance of patients is an important factor which leads to failure of epilepsy treatments using medications in 30% of patients. Surgery is also not a viable option in a substantial number of patients. In such cases, a new kind of seizure forecasting system is necessary to help those people. In our work, various sub-frequency bands of EEG signals are produced from the originally recorded Intracranial Electroencephalogram (IEEG) signals of five canines and two persons to identify possible low complex and less intense EEG features from each sub-band of the entire spectrum. Support Vector Machine (SVM) with different Kernel-based classifiers are used to categorize features into preictal and interictal data. Epileptic Seizures forecasting accuracy of 99% has been achieved for data from canine and human. Employed wavelet filter for noise removal and found that it improved the seizure prediction accuracy in some subjects and reduced the accuracy in some subjects. Similarly, the feature selection technique also improved the preictal detection accuracy in some patients/subjects and reduced the accuracy in some data. From this work, we identified that seizure prediction is possible in at least one sub-frequency band especially in high gamma sub-band generated from the originally recorded signal using a high-pass filter. This work demonstrates an algorithm for seizure forecasting or identifying the preictal region which identifies the suitable best sub-frequency band for predicting the seizure of the originally recorded EEG data by using the computationally less intense EEG features and employing the best classifying SVM kernel." @default.
- W3136215431 created "2021-03-29" @default.
- W3136215431 creator A5010149207 @default.
- W3136215431 creator A5014474300 @default.
- W3136215431 creator A5049701126 @default.
- W3136215431 creator A5065060448 @default.
- W3136215431 creator A5073435074 @default.
- W3136215431 date "2021-03-16" @default.
- W3136215431 modified "2023-10-16" @default.
- W3136215431 title "SVM CLASSIFIER FOR EPILEPTIC SEIZURE PREDICTION USING SUB-BANDING OF IEEG SIGNALS" @default.
- W3136215431 doi "https://doi.org/10.4015/s1016237221500241" @default.
- W3136215431 hasPublicationYear "2021" @default.
- W3136215431 type Work @default.
- W3136215431 sameAs 3136215431 @default.
- W3136215431 citedByCount "0" @default.
- W3136215431 crossrefType "journal-article" @default.
- W3136215431 hasAuthorship W3136215431A5010149207 @default.
- W3136215431 hasAuthorship W3136215431A5014474300 @default.
- W3136215431 hasAuthorship W3136215431A5049701126 @default.
- W3136215431 hasAuthorship W3136215431A5065060448 @default.
- W3136215431 hasAuthorship W3136215431A5073435074 @default.
- W3136215431 hasConcept C119857082 @default.
- W3136215431 hasConcept C12267149 @default.
- W3136215431 hasConcept C148483581 @default.
- W3136215431 hasConcept C153180895 @default.
- W3136215431 hasConcept C154945302 @default.
- W3136215431 hasConcept C15744967 @default.
- W3136215431 hasConcept C169760540 @default.
- W3136215431 hasConcept C17755696 @default.
- W3136215431 hasConcept C2778186239 @default.
- W3136215431 hasConcept C2779334592 @default.
- W3136215431 hasConcept C28490314 @default.
- W3136215431 hasConcept C41008148 @default.
- W3136215431 hasConcept C522805319 @default.
- W3136215431 hasConcept C95623464 @default.
- W3136215431 hasConceptScore W3136215431C119857082 @default.
- W3136215431 hasConceptScore W3136215431C12267149 @default.
- W3136215431 hasConceptScore W3136215431C148483581 @default.
- W3136215431 hasConceptScore W3136215431C153180895 @default.
- W3136215431 hasConceptScore W3136215431C154945302 @default.
- W3136215431 hasConceptScore W3136215431C15744967 @default.
- W3136215431 hasConceptScore W3136215431C169760540 @default.
- W3136215431 hasConceptScore W3136215431C17755696 @default.
- W3136215431 hasConceptScore W3136215431C2778186239 @default.
- W3136215431 hasConceptScore W3136215431C2779334592 @default.
- W3136215431 hasConceptScore W3136215431C28490314 @default.
- W3136215431 hasConceptScore W3136215431C41008148 @default.
- W3136215431 hasConceptScore W3136215431C522805319 @default.
- W3136215431 hasConceptScore W3136215431C95623464 @default.
- W3136215431 hasLocation W31362154311 @default.
- W3136215431 hasOpenAccess W3136215431 @default.
- W3136215431 hasPrimaryLocation W31362154311 @default.
- W3136215431 hasRelatedWork W10685603 @default.
- W3136215431 hasRelatedWork W13126205 @default.
- W3136215431 hasRelatedWork W18491753 @default.
- W3136215431 hasRelatedWork W1974984 @default.
- W3136215431 hasRelatedWork W21683520 @default.
- W3136215431 hasRelatedWork W25485984 @default.
- W3136215431 hasRelatedWork W2772003 @default.
- W3136215431 hasRelatedWork W5342431 @default.
- W3136215431 hasRelatedWork W5767698 @default.
- W3136215431 hasRelatedWork W8704728 @default.
- W3136215431 isParatext "false" @default.
- W3136215431 isRetracted "false" @default.
- W3136215431 magId "3136215431" @default.
- W3136215431 workType "article" @default.